Fully Fuzzy Linear Programming Problem with Triangular Fuzzy Numbers

2016 ◽  
Vol 13 (7) ◽  
pp. 4036-4041 ◽  
Author(s):  
Qiumei Liu ◽  
Xin Gao
2021 ◽  
pp. 1-14
Author(s):  
Manisha Malik ◽  
S. K. Gupta ◽  
I. Ahmad

In many real-world problems, one may encounter uncertainty in the input data. The fuzzy set theory fits well to handle such situations. However, it is not always possible to determine with full satisfaction the membership and non-membership degrees associated with an element of the fuzzy set. The intuitionistic fuzzy sets play a key role in dealing with the hesitation factor along-with the uncertainity involved in the problem and hence, provides more flexibility in the decision-making process. In this article, we introduce a new ordering on the set of intuitionistic fuzzy numbers and propose a simple approach for solving the fully intuitionistic fuzzy linear programming problems with mixed constraints and unrestricted variables where the parameters and decision variables of the problem are represented by intuitionistic fuzzy numbers. The proposed method converts the problem into a crisp non-linear programming problem and further finds the intuitionistic fuzzy optimal solution to the problem. Some of the key significance of the proposed study are also pointed out along-with the limitations of the existing studies. The approach is illustrated step-by-step with the help of a numerical example and further, a production planning problem is also demonstrated to show the applicability of the study in practical situations. Finally, the efficiency of the proposed algorithm is analyzed with the existing studies based on various computational parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Haifang Cheng ◽  
Weilai Huang ◽  
Jianhu Cai

In the current literatures, there are several models of fully fuzzy linear programming (FFLP) problems where all the parameters and variables were fuzzy numbers but the constraints were crisp equality or inequality. In this paper, an FFLP problem with fuzzy equality constraints is discussed, and a method for solving this FFLP problem is also proposed. We first transform the fuzzy equality constraints into the crisp inequality ones using the measure of the similarity, which is interpreted as the feasibility degree of constrains, and then transform the fuzzy objective into two crisp objectives by considering expected value and uncertainty of fuzzy objective. Since the feasibility degree of constrains is in conflict with the optimal value of objective function, we finally construct an auxiliary three-objective linear programming problem, which is solved through a compromise programming approach, to solve the initial FFLP problem. To illustrate the proposed method, two numerical examples are solved.


Author(s):  
JAMES J. BUCKLEY ◽  
THOMAS FEURING ◽  
YOICHI HAYASHI

In this paper we wish to solve multi-objective fully fuzzified linear programming problems which are multi-objective linear programming problems where all the parameters and variables are fuzzy numbers. We change this problem into a single objective fuzzy linear programming problem and then show that our solution procedure can be used to explore the whole undominated set. An evolutionary algorithm is then designed to generate undominated solutions. An example is presented showing our evolutionary algorithm solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Muhammad Athar Mehmood ◽  
Muhammad Akram ◽  
Majed G. Alharbi ◽  
Shahida Bashir

The Yin-Yang bipolar fuzzy set is a powerful mathematical tool for depicting fuzziness and vagueness. We first extend the concept of crisp linear programming problem in a bipolar fuzzy environment based on bipolar fuzzy numbers. We first define arithmetic operations of unrestricted bipolar fuzzy numbers and multiplication of an unrestricted trapezoidal bipolar fuzzy number (TrBFN) with non-negative TrBFN. We then propose a method for solving fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints in which the coefficients are unrestricted triangular bipolar fuzzy numbers and decision variables are nonnegative triangular bipolar fuzzy numbers. Furthermore, we present a method for solving FBFLPPs with equality constraints in which the coefficients and decision variables are unrestricted TrBFNs. The FBFLPP is transformed into a crisp linear programming problem, and then, it is solved to achieve the exact bipolar fuzzy optimal solution. We illustrate the proposed methodologies with several numerical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Muhammad Athar Mehmood ◽  
Muhammad Akram ◽  
Majed G. Alharbi ◽  
Shahida Bashir

In this study, we present a technique to solve LR -type fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints. We define LR -type bipolar fuzzy numbers and their arithmetic operations. We discuss multiplication of LR -type bipolar fuzzy numbers. Furthermore, we develop a method to solve LR -type FBFLPPs with equality constraints involving LR -type bipolar fuzzy numbers as parameters and variables. Moreover, we define ranking for LR -type bipolar fuzzy numbers which transform the LR -type FBFLPP into a crisp linear programming problem. Finally, we consider numerical examples to illustrate the proposed method.


2017 ◽  
Vol 10 (1) ◽  
pp. 18-23
Author(s):  
M. A Lone ◽  
S. A Mir ◽  
M.S Wani

In this paper, we investigate a Transportation problem which is a special kind of linear programming in which profits; supply and demands are considered as Intuitionistic triangular fuzzy numbers. The crisp values of these Intuitionistic triangular fuzzy numbers are obtained by defuzzifying them and the problem is formulated into linear programming problem. The solution of the formulated problem is obtained through LINGO software. If the obtained solution is non-integer then Branch and Bound method can be used to obtain an integer solution.


Sign in / Sign up

Export Citation Format

Share Document