ROBUST FUZZY REGRESSION ANALYSIS USING NEURAL NETWORKS

Author(s):  
EBRAHIM NASRABADI ◽  
S. MEHDI HASHEMI

Some neural network related methods have been applied to nonlinear fuzzy regression analysis by several investigators. The performance of these methods will significantly worsen when the outliers exist in the training data set. In this paper, we propose a training algorithm for fuzzy neural networks with general fuzzy number weights, biases, inputs and outputs for computation of nonlinear fuzzy regression models. First, we define a cost function that is based on the concept of possibility of fuzzy equality between the fuzzy output of fuzzy neural network and the corresponding fuzzy target. Next, a training algorithm is derived from the cost function in a similar manner as the back-propagation algorithm. Last, we examine the ability of our approach by computer simulations on numerical examples. Simulation results show that the proposed algorithm is able to reduce the outlier effects.

Author(s):  
Tsung-Chih Lin ◽  
Yi-Ming Chang ◽  
Tun-Yuan Lee

This paper proposes a novel fuzzy modeling approach for identification of dynamic systems. A fuzzy model, recurrent interval type-2 fuzzy neural network (RIT2FNN), is constructed by using a recurrent neural network which recurrent weights, mean and standard deviation of the membership functions are updated. The complete back propagation (BP) algorithm tuning equations used to tune the antecedent and consequent parameters for the interval type-2 fuzzy neural networks (IT2FNNs) are developed to handle the training data corrupted by noise or rule uncertainties for nonlinear system identification involving external disturbances. Only by using the current inputs and most recent outputs of the input layers, the system can be completely identified based on RIT2FNNs. In order to show that the interval IT2FNNs can handle the measurement uncertainties, training data are corrupted by white Gaussian noise with signal-to-noise ratio (SNR) 20 dB. Simulation results are obtained for the identification of nonlinear system, which yield more improved performance than those using recurrent type-1 fuzzy neural networks (RT1FNNs).


2011 ◽  
Vol 187 ◽  
pp. 371-376
Author(s):  
Ping Zhang ◽  
Xiao Hong Hao ◽  
Heng Jie Li

In order to avoid the over fitting and training and solve the knowledge extraction problem in fuzzy neural networks system. Ying Learning Dynamic Fuzzy Neural Network (YL-DFNN) algorithm is proposed. The Learning Set based on K-VNN is constituted from message. Then the framework of is designed and its stability is proved. Finally, Simulation indicates that the novel algorithm is fast, compact, and capable in generalization.


Author(s):  
Cleber Zanchettin ◽  
Teresa Bernarda Ludermir

Este trabalho investiga a utilização de Sistemas Híbridos Inteligentes no sistema de reconhecimento de padrões de um nariz artificial. São abordadas as arquiteturas conexionistas Multi-Layer Perceptron e Time Delay Neural Network; e as arquiteturas híbridas Feature-weighted Detector e Evolving Fuzzy Neural Networks. Além dos classificadores, um filtro Wavelet é avaliado como método de pré-processamento para os sinais de odores. Foram analisados sinais gerados por um nariz artificial, composto por um conjunto de sensores de polímeros condutores, exposto a duas bases de odores distintas.


Sign in / Sign up

Export Citation Format

Share Document