Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Time-Varying Input Delays Using the Quadratic Functions

Author(s):  
Hongyun Yue ◽  
Junmin Li ◽  
Jiarong Shi ◽  
Wei Yang

In this paper, for the stochastic nonlinear systems the adaptive fuzzy tracking controllers are constructed by using the fuzzy logic systems (FLS) and the classical quadratic functions. Compared with the existing results for adaptive fuzzy control, the stochastic nonlinear systems investigated in this paper are much more complex since the systems not only have distributed state time-varying delays in the noise jamming intensity terms but also have the time-varying delays in the input signals. During the controller design procedure, through appropriate assumptions and a state transformation the system with time-varying input delay can be easily transformed into a system without input delay. The other main advantage is that quadratic functions are used as Lyapunov functions to analyze the stability of systems, other than the fourth moment approach proposed by H. Deng and M. Krstic, and the hyperbolic tangent functions are introduced to deal with the Hessian terms. The proposed adaptive fuzzy controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error can converge to a small residual set around the origin in the mean square sense.

Author(s):  
Mohamed Hamdy ◽  
Sameh Abd-Elhaleem ◽  
M. A. Fkirin

This paper presents an adaptive fuzzy controller for a class of unknown nonlinear systems over network. The network-induced delays can degrade the performance of the networked control systems (NCSs) and also can destabilize the system. Moreover, the seriousness of the delay problem is aggravated when packet losses occur during a transmission of data. The proposed controller uses a filtered tracking error to cope the time-varying network-induced delays. It is also robust enough to cope some packet losses in the system. Fuzzy logic systems (FLSs) are used to approximate the unknown nonlinear functions that appear in the tracking controller. Based on Lyapunov stability theory, the constructed controller is proved to be asymptotically stable. Stability of the adaptive fuzzy controller is guaranteed in the presence of bounded external disturbance, time-varying delays, and data packet dropouts. Simulated application of the inverted pendulum tracking illustrates the effectiveness of the proposed technique with comparative results.


Sign in / Sign up

Export Citation Format

Share Document