INVESTIGATION OF TRAPPED LIGHT IN THIN-FILM SILICON SOLAR CELLS

2010 ◽  
Vol 19 (04) ◽  
pp. 645-651 ◽  
Author(s):  
T. BECKERS ◽  
K. BITTKAU ◽  
R. CARIUS

In thin-film silicon solar cell devices randomly textured interfaces are used to achieve light scattering sufficient for efficient light trapping. We use near-field scanning optical microscopy (NSOM) for visualizing wave guiding mechanisms experimentally by measuring the evanescent modes. Their impact on the light trapping efficiency and the link to topographic structures will be addressed.

2011 ◽  
Vol 1321 ◽  
Author(s):  
K. Bittkau ◽  
A. Hoffmann ◽  
J. Owen ◽  
R. Carius

ABSTRACTIn order to obtain efficient light trapping within a thin-film silicon solar cell, randomly textured interfaces are used. The texture can be introduced by wet-chemical etching in diluted hyrdofluoric acid (HF). By varying of the HF concentration, a continuous transition to smaller surface structures can be achieved. Near-field scanning optical microscopy is applied to measure scattered light with sub-wavelength resolution. On those different surfaces, using Fourier high-pass filters on the measured near-field images, surface features with a high light trapping potential are identified. Finally, criteria for optimized scattering surfaces are obtained.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Ales Poruba ◽  
Petr Klapetek ◽  
Jakub Holovsky ◽  
Adam Purkrt ◽  
Milan Vanecek

AbstractNew approach for the determination of the angular distribution of the scattered light at nano-rough surfaces/interfaces from AFM (Atomic Force Microscopy) data is presented. Calculation comes from modeling the electromagnetic field in the tight vicinity of the nano-rough surface by complex solution of Maxwell's equations and subsequent near field to far field transform. This method is demonstrated for four types of transparent conductive oxides (with rough free surfaces) deposited on glass substrates. As a result we have the amount and angular distribution of the scattered light „observed” in both transmission and reflection. Moreover calculation can be done for real sample dimensions (to compare the results with the measurement of the angular distribution function using LED laser) or for a semi-infinite sample which suppresses the interference effects and thus such distribution functions can be used as an input parameter for our 3-dimensional optical model CELL for thin film silicon solar cell modeling.In the second part of this contribution we describe our experiment of thin film silicon solar cell characterization by Light Beam Induced Current (LBIC). This measurement done for laboratory solar cell structures reveals the light scattering and light trapping properties of the multilayer stack on a glass substrate. We suggest the test structure for the direct back reflector quality comparison and thus also for its optimization.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2602 ◽  
Author(s):  
Rokeya Jahan Mukti ◽  
Md Rabiul Hossain ◽  
Ariful Islam ◽  
Saad Mekhilef ◽  
Ben Horan

This article presents an effective structural design arrangement for light trapping in the front surface of a thin film silicon solar cell (TFSC). Front surface light trapping rate is significantly enhanced here by incorporating the Aluminium (Al) nanoparticle arrays into silicon nitride anti-reflection layer. The light trapping capability of these arrays is extensively analyzed via Finite Difference Time Domain (FDTD) method considering the wavelength ranging from 400 to 1100 nm. The outcome indicates that the structural parameters associated with the aluminium nanoparticle arrays like particle radii and separations between adjacent particles, play vital roles in designing the solar cell to achieve better light trapping efficiency. A detailed comparative analysis has justified the effectiveness of this approach while contrasting the results found with commonly used silver nanoparticle arrays at the front surface of the cell. Because of the surface plasmon excitation, lower light reflectance, and significant near field enhancement, aluminium nanoparticle arrays offer broadband light absorption by the cell.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 920-923 ◽  
Author(s):  
Hidetoshi Wada ◽  
Keiichi Nishikubo ◽  
Porponth Sichanugrist ◽  
Makoto Konagai

Light trapping effect using rough surface transparent conductive oxide (TCO) is one of the best ways to achieve high efficiency thin-film silicon solar cells. Several types of rough ZnO film fabricated by metal organic chemical vapor deposition technique onto the glass, which are etched by reactive ion etching, have been proposed so far as promising TCO substrates. In this paper, newly developed ZnO substrate with extremely high light scattering property comparing with typical pyramidal texture one was developed. By applying this newly developed ZnO substrate to the solar cell, higher short circuit current of about 2% has been achieved comparing with typical pyramidal texture one without sacrificing other parameters. This result showed that the newly developed substrate is suitable as a front TCO substrate for high performance thin-film silicon solar cell.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Miro Zeman ◽  
Olindo Isabella ◽  
Klaus Jäger ◽  
Pavel Babal ◽  
Serge Solntsev ◽  
...  

ABSTRACTDue to the increasing complexity of thin-film silicon solar cells, the role of computer modeling for analyzing and designing these devices becomes increasingly important. The ASA program was used to study two of these advanced devices. The simulations of an amorphous silicon solar cell with silver nanoparticles embedded in a zinc oxide back reflector demonstrated the negative effect of the parasitic absorption in the particles. When using optical properties of perfectly spherical particles a modest enhancement in the external quantum efficiency was found. The simulations of a tandem micromorph solar cell, in which a zinc oxide based photonic crystal-like multilayer was incorporated as an intermediate reflector (IR), demonstrated that the IR resulted in an enhanced photocurrent in the top cell and could be used to optimize the current matching of the top and bottom cell.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Janez Krc ◽  
Andrej Campa ◽  
Stefan L. Luxembourg ◽  
Miro Zeman ◽  
Marko Topic

AbstractAdvanced light management in thin-film solar cells is important in order to improve the photo-current and, thus, to raise up the conversion efficiencies of the solar cells. In this article two types of periodic structures ¡V one-dimensional diffraction gratings and photonic crystals,are analyzed in the direction of showing their potential for improved light trapping in thin-film silicon solar cells. The anti-reflective effects and enhanced scattering at the gratings with the triangular and rectangular features are studied by means of two-dimensional optical simulations. Simulations of the complete microcrystalline solar cell incorporating the gratings at all interfaces are presented. Critical optical issues to be overcome for achieving the performances of the cells with the optimized randomly textured interfaces are pointed out. Reflectance measurements for the designed 12 layer photonic crystal stack consisting of amorphous silicon nitride and amorphous silicon layers are presented and compared with the simulations. High reflectance (up to 99 %) of the stack is measured for a broad wavelength spectrum. By means of optical simulations the potential for using a simple photonic crystal structure as a back reflector in an amorphous silicon solar cell is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document