scholarly journals DECOMPOSITION FORMULA FOR JUMP DIFFUSION MODELS

2018 ◽  
Vol 21 (08) ◽  
pp. 1850052
Author(s):  
R. MERINO ◽  
J. POSPÍŠIL ◽  
T. SOBOTKA ◽  
J. VIVES

In this paper, we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alòs [(2012) A decomposition formula for option prices in the Heston model and applications to option pricing approximation, Finance and Stochastics 16 (3), 403–422, doi: https://doi.org/10.1007/s00780-012-0177-0 ] for Heston [(1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies 6 (2), 327–343, doi: https://doi.org/10.1093/rfs/6.2.327 ] SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models — models utilizing a variance process postulated by Heston [(1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies 6 (2), 327–343, doi: https://doi.org/10.1093/rfs/6.2.327 ]. In particular, we inspect in detail the approximation formula for the Bates [(1996), Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options, The Review of Financial Studies 9 (1), 69–107, doi: https://doi.org/10.1093/rfs/9.1.69 ] model with log-normal jump sizes and we provide a numerical comparison with the industry standard — Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behavior under a specific SVJ model.

GIS Business ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 32-46
Author(s):  
Noureddine Lahouel ◽  
Slaheddine Hellara

In the option pricing theory, two important approaches have been developed to evaluate the prices of a European option. The first approach develops an almost closed-form option pricing formula under a specific GARCH process (Heston & Nandi, 2000). The second approach develops an analytical approximation for computing European option prices with more widespread NGARCH models (Duan, Gauthier & Simonato, 1999). The analytical approximation was also developed under GJR-GARCH and EGARCH models by Duan, Gauthier, Sasseville & Simonato (2006). However, no empirical work was performed to study the comparative performance of these two formulas (closed-form solution and analytical approximation). Also, it is possible to develop an analytical approximation under the specific GARCH model of Heston & Nandi (2000). In this paper, we have filled up those gaps. We started with the development of an analytical approximation, for computing European option prices, under Heston-Nandis GARCH model. In the second step, we carried out a comparative analysis of the three formulas using CAC 40 index returns from 31 December 1987 to 31 December 2013.


Author(s):  
Puneet Pasricha ◽  
Anubha Goel

This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.


2010 ◽  
Vol 13 (06) ◽  
pp. 901-929 ◽  
Author(s):  
FERNANDA D'IPPOLITI ◽  
ENRICO MORETTO ◽  
SARA PASQUALI ◽  
BARBARA TRIVELLATO

A stochastic volatility jump-diffusion model for pricing derivatives with jumps in both spot return and volatility underlying dynamics is presented. This model admits, in the spirit of Heston, a closed-form solution for European-style options. The structure of the model is also suitable to explicitly obtain the fair delivery price for variance swaps. To evaluate derivatives whose value does not admit a closed-form expression, a methodology based on an "exact algorithm", in the sense that no discretization of equations is required, is developed and applied to barrier options. Goodness of pricing algorithm is tested using DJ Euro Stoxx 50 market data for European options. Finally, the algorithm is applied to compute prices and Greeks for barrier options and to determine the fair delivery prices for variance swaps.


Author(s):  
Hye-mee Kil ◽  
Jeong-Hoon Kim

Abstract The double-mean-reverting model, introduced by Gatheral [(2008). Consistent modeling of SPX and VIX options. In The Fifth World Congress of the Bachelier Finance Society London, July 18], is known to be a successful three-factor model that can be calibrated to both CBOE Volatility Index (VIX) and S&P 500 Index (SPX) options. However, the calibration of this model may be slow because there is no closed-form solution formula for European options. In this paper, we use a rescaled version of the model developed by Huh et al. [(2018). A scaled version of the double-mean-reverting model for VIX derivatives. Mathematics and Financial Economics 12: 495–515] and obtain explicitly a closed-form pricing formula for European option prices. Our formulas for the first and second-order approximations do not require any complicated calculation of integral. We demonstrate that a faster calibration result of the double-mean revering model is available and yet the practical implied volatility surface of SPX options can be produced. In particular, not only the usual convex behavior of the implied volatility surface but also the unusual concave down behavior as shown in the COVID-19 market can be captured by our formula.


Sign in / Sign up

Export Citation Format

Share Document