scholarly journals PROOF THEORY OF WEAK COMPACTNESS

2013 ◽  
Vol 13 (01) ◽  
pp. 1350003 ◽  
Author(s):  
TOSHIYASU ARAI

We show that the existence of a weakly compact cardinal over the Zermelo–Fraenkel's set theory ZF is proof-theoretically reducible to iterations of Mostowski collapsings and Mahlo operations.

2018 ◽  
Vol 83 (1) ◽  
pp. 349-371
Author(s):  
JAMES CUMMINGS ◽  
SY-DAVID FRIEDMAN ◽  
MENACHEM MAGIDOR ◽  
ASSAF RINOT ◽  
DIMA SINAPOVA

AbstractThree central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying a nonreflecting stationary set or a${\kappa ^{ + + }}$-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large cardinal into${\aleph _\omega }$.


2015 ◽  
Vol 54 (5-6) ◽  
pp. 491-510 ◽  
Author(s):  
Brent Cody ◽  
Moti Gitik ◽  
Joel David Hamkins ◽  
Jason A. Schanker

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


1983 ◽  
Vol 48 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Yuri Gurevich ◽  
Menachem Magidor ◽  
Saharon Shelah

AbstractAssume ZFC + “There is a weakly compact cardinal” is consistent. Then:(i) For every S ⊆ ω, ZFC + “S and the monadic theory of ω2 are recursive each in the other” is consistent; and(ii) ZFC + “The full second-order theory of ω2 is interpretable in the monadic theory of ω2” is consistent.


1985 ◽  
Vol 50 (3) ◽  
pp. 597-603
Author(s):  
M. Gitik ◽  
M. Magidor ◽  
H. Woodin

AbstractIt is proven that the following statement:“there exists a club C ⊆ κ such that every α ∈ C is an inaccessible cardinal in L and, for every δ a limit point of C, C ∩ δ is almost contained in every club of δ of L”is equiconsistent with a weakly compact cardinal if δ = ℵ1, and with a weakly compact cardinal of order 1 if δ = ℵ2.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


2000 ◽  
Vol 65 (3) ◽  
pp. 1204-1214 ◽  
Author(s):  
Amir Leshem

AbstractIn this paper we prove the equiconsistency of “Every ω1 –tree which is first order definable over (, ε) has a cofinal branch” with the existence of a reflecting cardinal. We also prove that the addition of MA to the definable tree property increases the consistency strength to that of a weakly compact cardinal. Finally we comment on the generalization to higher cardinals.


2016 ◽  
Vol 81 (2) ◽  
pp. 711-717
Author(s):  
DAN HATHAWAY

AbstractLet $B$ be a complete Boolean algebra. We show that if λ is an infinite cardinal and $B$ is weakly (λω, ω)-distributive, then $B$ is (λ, 2)-distributive. Using a similar argument, we show that if κ is a weakly compact cardinal such that $B$ is weakly (2κ, κ)-distributive and $B$ is (α, 2)-distributive for each α < κ, then $B$ is (κ, 2)-distributive.


Sign in / Sign up

Export Citation Format

Share Document