On the ordering of certain large cardinals

1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.

2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


1992 ◽  
Vol 57 (3) ◽  
pp. 970-974 ◽  
Author(s):  
Yo Matsubara

The large cardinal-like properties of saturated ideals have been investigated by various authors, including Foreman [F], and Jech and Prikry [JP], among others. One of the most interesting consequences of a strongly compact cardinal is the following theorem of Solovay [So2]: if a strongly compact cardinal exists then the singular cardinal hypothesis holds above it. In this paper we discuss the question of relating the existence of saturated ideals and the singular cardinal hypothesis. We will show that the existence of “strongly” saturated ideals implies the singular cardinal hypothesis. As a biproduct we will present a proof of the above mentioned theorem of Solovay using generic ultrapowers. See Jech and Prikry [JP] for a nice exposition of generic ultrapowers. We owe a lot to the work of Foreman [F]. We would like to express our gratitude to Noa Goldring for many helpful comments and discussions.Throughout this paper we assume that κ is a strongly inaccessible cardinal and λ is a cardinal >κ. By an ideal on κλ we mean a κ-complete fine ideal on Pκλ. For I an ideal on κλ let PI denote the poset of I-positive subsets of κλ.Definition. Let I be an ideal on κλ. We say that I is a bounding ideal if 1 ⊩-PI “δ(δ is regular cardinal ”.We can show that if a normal ideal is “strongly” saturated then it is bounding.Theorem 1. If 1 is an η-saturated normal ideal onκλ, where η is a cardinal <λsuch that there are fewer thanκmany cardinals betweenκand η (i.e. η < κ+κ), then I is bounding.Proof. Let I be such an ideal on κλ. By the work of Foreman [F] and others, we know that every λ+-saturated normal ideal is precipitous. Suppose G is a generic filter for our PI. Let j: V → M be the corresponding generic elementary embedding. By a theorem of Foreman [F, Lemma 10], we know that Mλ ⊂ M in V[G]. By η-saturation, cofinalities ≥η are preserved; that is, if cfvα ≥ η, then cfvα = cfv[G]α. From j ↾ Vκ being the identity on Vκ and M being λ-closed in V[G], we conclude that cofinalities <κ are preserved. Therefore if cfvα ≠ cfv[G]α then κ ≤ cfvα < η.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


1981 ◽  
Vol 46 (1) ◽  
pp. 59-66
Author(s):  
A. Kanamori

This paper continues the study of κ-ultrafilters over a measurable cardinal κ, following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much of the concern will be with p-point κ-ultrafilters, which have become a focus of attention because they epitomize situations of further complexity beyond the better understood cases, normal and product κ-ultrafilters.For any κ-ultrafilter D, let iD: V → MD ≃ Vκ/D be the elementary embedding of the universe into the transitization of the ultrapower by D. Situations of U < RKD will be exhibited when iU(κ) < iD(κ), and when iU(κ) = iD(κ). The main result will then be that if the latter case obtains, then there is an inner model with two measurable cardinals. (As will be pointed out, this formulation is due to Kunen, and improves on an earlier version of the author.) Incidentally, a similar conclusion will also follow from the assertion that there is an ascending Rudin-Keisler chain of κ-ultrafilters of length ω + 1. The interest in these results lies in the derivability of a substantial large cardinal assertion from plausible hypotheses on κ-ultrafilters.


1985 ◽  
Vol 50 (3) ◽  
pp. 597-603
Author(s):  
M. Gitik ◽  
M. Magidor ◽  
H. Woodin

AbstractIt is proven that the following statement:“there exists a club C ⊆ κ such that every α ∈ C is an inaccessible cardinal in L and, for every δ a limit point of C, C ∩ δ is almost contained in every club of δ of L”is equiconsistent with a weakly compact cardinal if δ = ℵ1, and with a weakly compact cardinal of order 1 if δ = ℵ2.


2018 ◽  
Vol 83 (1) ◽  
pp. 349-371
Author(s):  
JAMES CUMMINGS ◽  
SY-DAVID FRIEDMAN ◽  
MENACHEM MAGIDOR ◽  
ASSAF RINOT ◽  
DIMA SINAPOVA

AbstractThree central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying a nonreflecting stationary set or a${\kappa ^{ + + }}$-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large cardinal into${\aleph _\omega }$.


2017 ◽  
Vol 82 (4) ◽  
pp. 1560-1575 ◽  
Author(s):  
NATASHA DOBRINEN ◽  
DAN HATHAWAY

AbstractSeveral variants of the Halpern–Läuchli Theorem for trees of uncountable height are investigated. Forκweakly compact, we prove that the various statements are all equivalent, and hence, the strong tree version holds for one tree on any weakly compact cardinal. For any finited≥ 2, we prove the consistency of the Halpern–Läuchli Theorem ondmany normalκ-trees at a measurable cardinalκ, given the consistency of aκ+d-strong cardinal. This follows from a more general consistency result at measurableκ, which includes the possibility of infinitely many trees, assuming partition relations which hold in models of AD.


1986 ◽  
Vol 51 (1) ◽  
pp. 147-151 ◽  
Author(s):  
Péter Komjáth

It was J. E. Baumgartner who in [1] proved that when a weakly compact cardinal is Lévy-collapsed to ω2 the new ω2 inherits some of the large cardinal properties; e.g. if S is a stationary set of ω-limits in ω2 then for some α < ω2, S ∩ α is stationary in α. Later S. Shelah extended this to the following theorem: if a supercompact cardinal κ is Lévy-collapsed to ω2, then in the resulting model the following holds: if S ⊆ λ is a stationary set of ω-limits and cf(λ) ≥ ω2 then there is an α. < λ such that S ∩ α is stationary in α, i.e. stationary reflection holds for countable cofinality (see [1] and [3]). These theorems are important prototypes of small cardinal compactness theorems; many applications and generalizations can be found in the literature. One might think that these results are true for sets with an uncountable cofinality μ as well, i.e. when an appropriate large cardinal is collapsed to μ++. Though this is true for Baumgartner's theorem, there remains a problem with Shelah's result. The point is that the lemma stating that a stationary set of ω-limits remains stationary after forcing with an ω2-closed partial order may be false in the case of μ-limits in a cardinal of the form λ+ with cf(λ) < μ, as was shown in [8] by Shelah. The problem has recently been solved by Baumgartner, who observed that if a universal box-sequence on the class of those ordinals with cofinality ≤ μ exists, the lemma still holds, and a universal box-sequence of the above type can be added without destroying supercompact cardinals beyond μ.


2015 ◽  
Vol 54 (5-6) ◽  
pp. 491-510 ◽  
Author(s):  
Brent Cody ◽  
Moti Gitik ◽  
Joel David Hamkins ◽  
Jason A. Schanker

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


Sign in / Sign up

Export Citation Format

Share Document