scholarly journals The special Aronszajn tree property

2019 ◽  
Vol 20 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Mohammad Golshani ◽  
Yair Hayut

Assuming the existence of a proper class of supercompact cardinals, we force a generic extension in which, for every regular cardinal [Formula: see text], there are [Formula: see text]-Aronszajn trees, and all such trees are special.

2012 ◽  
Vol 77 (1) ◽  
pp. 279-290 ◽  
Author(s):  
Dima Sinapova

AbstractWe show that given ω many supercompact cardinals, there is a generic extension in which there are no Aronszajn trees at ℵω+1· This is an improvement of the large cardinal assumptions. The previous hypothesis was a huge cardinal and ω many supercompact cardinals above it, in Magidor–Shelah [7].


2012 ◽  
Vol 77 (3) ◽  
pp. 934-946 ◽  
Author(s):  
Dima Sinapova

AbstractWe show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at ℵω2+ 1 and the SCH fails at ℵω2.


2020 ◽  
pp. 2150003
Author(s):  
Rahman Mohammadpour ◽  
Boban Veličković

Starting with two supercompact cardinals we produce a generic extension of the universe in which a principle that we call [Formula: see text] holds. This principle implies [Formula: see text] and [Formula: see text], and hence the tree property at [Formula: see text] and [Formula: see text], the Singular Cardinal Hypothesis, and the failure of the weak square principle [Formula: see text], for all regular [Formula: see text]. In addition, it implies that the restriction of the approachability ideal [Formula: see text] to the set of ordinals of cofinality [Formula: see text] is the nonstationary ideal on this set. The consistency of this last statement was previously shown by W. Mitchell.


1982 ◽  
Vol 47 (4) ◽  
pp. 739-754
Author(s):  
C.P. Farrington

This paper is devoted to the proof of the following theorem.Theorem. Let M be a countable standard transitive model of ZF + V = L, and let ℒ Є M be a wellfounded lattice in M, with top and bottom. Let ∣ℒ∣M = λ, and suppose κ ≥ λ is a regular cardinal in M. Then there is a generic extension N of M such that(i) N and M have the same cardinals, and κN ⊂ M;(ii) the c-degrees of sets of ordinals of N form a pattern isomorphic to ℒ;(iii) if A ⊂ On and A Є N, there is B Є P(κ+)N such that L(A) = L(B).The proof proceeds by forcing with Souslin trees, and relies heavily on techniques developed by Jech. In [5] he uses these techniques to construct simple Boolean algebras in L, and in [6] he uses them to construct a model of set theory whose c-degrees have orderlype 1 + ω*.The proof also draws on ideas of Adamovicz. In [1]–[3] she obtains consistency results concerning the possible patterns of c-degrees of sets of ordinals using perfect set forcing and symmetric models. These methods have the advantage of yielding real degrees, but involve greater combinatorial complexity, in particular the use of ‘sequential representations’ of lattices.The advantage of the approach using Souslin trees is twofold: first, we can make use of ready-made combinatorial principles which hold in L, and secondly, the notion of genericity over a Souslin tree is particularly simple.


2014 ◽  
Vol 79 (01) ◽  
pp. 193-207 ◽  
Author(s):  
LAURA FONTANELLA

Abstract An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where ${\aleph _{\omega + 1}}$ has the strong tree property. Moreover, we prove that every successor of a singular limit of strongly compact cardinals has the strong tree property.


2014 ◽  
Vol 79 (2) ◽  
pp. 429-459 ◽  
Author(s):  
ITAY NEEMAN

AbstractAssuming ω supercompact cardinals we force to obtain a model where the tree property holds both at אω+1, and at אn for all 2 ≤ n < ω. A model with the former was obtained by Magidor–Shelah from a large cardinal assumption above a huge cardinal, and recently by Sinapova from ω supercompact cardinals. A model with the latter was obtained by Cummings–Foreman from ω supercompact cardinals. Our model, where the two hold simultaneously, is another step toward the goal of obtaining the tree property on increasingly large intervals of successor cardinals.


2018 ◽  
Vol 83 (04) ◽  
pp. 1512-1538 ◽  
Author(s):  
CHRIS LAMBIE-HANSON ◽  
PHILIPP LÜCKE

AbstractWith the help of various square principles, we obtain results concerning the consistency strength of several statements about trees containing ascent paths, special trees, and strong chain conditions. Building on a result that shows that Todorčević’s principle $\square \left( {\kappa ,\lambda } \right)$ implies an indexed version of $\square \left( {\kappa ,\lambda } \right)$, we show that for all infinite, regular cardinals $\lambda < \kappa$, the principle $\square \left( \kappa \right)$ implies the existence of a κ-Aronszajn tree containing a λ-ascent path. We then provide a complete picture of the consistency strengths of statements relating the interactions of trees with ascent paths and special trees. As a part of this analysis, we construct a model of set theory in which ${\aleph _2}$-Aronszajn trees exist and all such trees contain ${\aleph _0}$-ascent paths. Finally, we use our techniques to show that the assumption that the κ-Knaster property is countably productive and the assumption that every κ-Knaster partial order is κ-stationarily layered both imply the failure of $\square \left( \kappa \right)$.


2019 ◽  
Vol 85 (1) ◽  
pp. 467-485
Author(s):  
RADEK HONZIK ◽  
ŠÁRKA STEJSKALOVÁ

AbstractIn the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$, and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$-cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$, where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ-many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$, a generic extension of V, in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}}}$ is indestructible under all ${\kappa ^ + }$-cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$, and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$-closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$-directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$-closed with the greatest lower bounds).


2009 ◽  
Vol 09 (01) ◽  
pp. 139-157 ◽  
Author(s):  
ITAY NEEMAN

The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove from large cardinals that the tree property at κ+ is consistent with failure of the singular cardinal hypothesis at κ.


Sign in / Sign up

Export Citation Format

Share Document