scholarly journals ORBIFOLD CUP PRODUCTS AND RING STRUCTURES ON HOCHSCHILD COHOMOLOGIES

2011 ◽  
Vol 13 (01) ◽  
pp. 123-182 ◽  
Author(s):  
M. J. PFLAUM ◽  
H. B. POSTHUMA ◽  
X. TANG ◽  
H.-H. TSENG

In this paper, we study the Hochschild cohomology ring of convolution algebras associated to orbifolds, as well as their deformation quantizations. In the first case, the ring structure is given in terms of a wedge product on twisted polyvectorfields on the inertia orbifold. After deformation quantization, the ring structure defines a product on the cohomology of the inertia orbifold. We study the relation between this product and an S1-equivariant version of the Chen–Ruan product. In particular, we give a de Rham model for this equivariant orbifold cohomology.

2011 ◽  
Vol 18 (02) ◽  
pp. 241-258 ◽  
Author(s):  
Takao Hayami

We determine the ring structure of the Hochschild cohomology HH*(ℤ G) of the integral group ring of the semidihedral 2-group G = SD2r of order 2r.


2012 ◽  
Vol 153 (3) ◽  
pp. 457-469 ◽  
Author(s):  
A. BAHRI ◽  
M. BENDERSKY ◽  
F. R. COHEN ◽  
S. GITLER

AbstractDavis–Januszkiewicz introduced manifolds which are now known as moment-angle manifolds over a polytope [6]. Buchstaber–Panov introduced and extensively studied moment-angle complexes defined for any abstract simplicial complex K [4]. They completely described the rational cohomology ring structure in terms of the Tor-algebra of the Stanley-Reisner algebra [4].Subsequent developments were given in work of Denham–Suciu [7] and Franz [9] which were followed by [1, 2]. Namely, given a family of based CW-pairs X, A) = {(Xi, Ai)}mi=1 together with an abstract simplicial complex K with m vertices, there is a direct extension of the Buchstaber–Panov moment-angle complex. That extension denoted Z(K;(X,A)) is known as the polyhedral product functor, terminology due to Bill Browder, and agrees with the Buchstaber–Panov moment-angle complex in the special case (X,A) = (D2, S1) [1, 2]. A decomposition theorem was proven which splits the suspension of Z(K; (X, A)) into a bouquet of spaces determined by the full sub-complexes of K.This paper is a study of the cup-product structure for the cohomology ring of Z(K; (X, A)). The new result in the current paper is that the structure of the cohomology ring is given in terms of this geometric decomposition arising from the “stable” decomposition of Z(K; (X, A)) [1, 2]. The methods here give a determination of the cohomology ring structure for many new values of the polyhedral product functor as well as retrieve many known results.Explicit computations are made for families of suspension pairs and for the cases where Xi is the cone on Ai. These results complement and extend those of Davis–Januszkiewicz [6], Buchstaber–Panov [3, 4], Panov [13], Baskakov–Buchstaber–Panov, [3], Franz, [8, 9], as well as Hochster [12]. Furthermore, under the conditions stated below (essentially the strong form of the Künneth theorem), these theorems also apply to any cohomology theory.


2018 ◽  
Vol 17 (11) ◽  
pp. 1850215 ◽  
Author(s):  
Karin Erdmann ◽  
Magnus Hellstrøm-Finnsen

We compute the Hochschild cohomology ring of the algebras [Formula: see text] over a field [Formula: see text] where [Formula: see text] and where [Formula: see text] is a primitive [Formula: see text]th root of unity. We find the dimension of [Formula: see text] and show that it is independent of [Formula: see text]. We compute explicitly the ring structure of the even part of the Hochschild cohomology modulo homogeneous nilpotent elements.


Author(s):  
Christophe Charles ◽  
Alain Margain

Abstract FIB/SEM and TEM are standard characterization techniques for evaluation of process modification of microelectronics samples. In this paper, artefacts from these techniques are studied. The sample preparation methods are optimized to avoid damages. Seal-ring structures are chosen as an example in this study to show artefacts and difficulties in SEM and TEM observations. Two cases of artefacts are considered: one with TEM sample preparation followed by TEM imaging, and the other one with SEM observations after FIB cross-sectioning. In the first case, electronic chips that failed during stress tests are investigated, while in the second case a part has been dismissed during robustness qualification test. In the former, thickness of TEM lamellae has been evidenced as a key factor for delamination between layers under beam, whereas in the latter, it was observed that the electron beam lead to a shrink of oxide layers, which induced the break of underlying contacts.


2018 ◽  
Vol 28 (02) ◽  
pp. 257-290
Author(s):  
Takao Hayami

We will determine the ring structure of the Hochschild cohomology [Formula: see text] of the integral group ring of the semidihedral group [Formula: see text] of order [Formula: see text] for arbitrary integer [Formula: see text] by giving the precise description of the integral cohomology ring [Formula: see text] and by using a method similar to [T. Hayami, Hochschild cohomology ring of the integral group ring of the semidihedral [Formula: see text]-group, Algebra Colloq. 18 (2011) 241–258].


Author(s):  
Zhifu Zhao ◽  
Shiyu Wang

This work is to study parametric vibration of a dual-ring structure through analytical and numerical methods by focusing on the relationships between basic parameters and parametric instability. An elastic dual-ring model is developed by using Lagrange method, where the radial and tangential deflections are included, and motionless and moving supports are also incorporated. Analytical results imply that there are four kinds of parametric excitations, and the numerical results show that there exist stable and unstable areas separated by transition curves or straight lines, and even crossover points. The relationships are determined as simple expressions in basic parameters, including discrete stiffness number and wavenumber. Whether the parametric resonance can be excited or not depends on the values of support stiffness, rotating speed, and natural frequency. Vibrations at the crossover points are also addressed by using the multiscale method. Comparisons against the available results regarding ring structures with moving supports are also made. Extensions of this study, including the use of powerful Sinha method to deal with the parametric vibration, are suggested.


Sign in / Sign up

Export Citation Format

Share Document