Cup-products for the polyhedral product functor

2012 ◽  
Vol 153 (3) ◽  
pp. 457-469 ◽  
Author(s):  
A. BAHRI ◽  
M. BENDERSKY ◽  
F. R. COHEN ◽  
S. GITLER

AbstractDavis–Januszkiewicz introduced manifolds which are now known as moment-angle manifolds over a polytope [6]. Buchstaber–Panov introduced and extensively studied moment-angle complexes defined for any abstract simplicial complex K [4]. They completely described the rational cohomology ring structure in terms of the Tor-algebra of the Stanley-Reisner algebra [4].Subsequent developments were given in work of Denham–Suciu [7] and Franz [9] which were followed by [1, 2]. Namely, given a family of based CW-pairs X, A) = {(Xi, Ai)}mi=1 together with an abstract simplicial complex K with m vertices, there is a direct extension of the Buchstaber–Panov moment-angle complex. That extension denoted Z(K;(X,A)) is known as the polyhedral product functor, terminology due to Bill Browder, and agrees with the Buchstaber–Panov moment-angle complex in the special case (X,A) = (D2, S1) [1, 2]. A decomposition theorem was proven which splits the suspension of Z(K; (X, A)) into a bouquet of spaces determined by the full sub-complexes of K.This paper is a study of the cup-product structure for the cohomology ring of Z(K; (X, A)). The new result in the current paper is that the structure of the cohomology ring is given in terms of this geometric decomposition arising from the “stable” decomposition of Z(K; (X, A)) [1, 2]. The methods here give a determination of the cohomology ring structure for many new values of the polyhedral product functor as well as retrieve many known results.Explicit computations are made for families of suspension pairs and for the cases where Xi is the cone on Ai. These results complement and extend those of Davis–Januszkiewicz [6], Buchstaber–Panov [3, 4], Panov [13], Baskakov–Buchstaber–Panov, [3], Franz, [8, 9], as well as Hochster [12]. Furthermore, under the conditions stated below (essentially the strong form of the Künneth theorem), these theorems also apply to any cohomology theory.

2011 ◽  
Vol 13 (01) ◽  
pp. 123-182 ◽  
Author(s):  
M. J. PFLAUM ◽  
H. B. POSTHUMA ◽  
X. TANG ◽  
H.-H. TSENG

In this paper, we study the Hochschild cohomology ring of convolution algebras associated to orbifolds, as well as their deformation quantizations. In the first case, the ring structure is given in terms of a wedge product on twisted polyvectorfields on the inertia orbifold. After deformation quantization, the ring structure defines a product on the cohomology of the inertia orbifold. We study the relation between this product and an S1-equivariant version of the Chen–Ruan product. In particular, we give a de Rham model for this equivariant orbifold cohomology.


2018 ◽  
Vol 28 (03) ◽  
pp. 365-380 ◽  
Author(s):  
Daciberg Lima Gonçalves ◽  
Sérgio Tadao Martins

Let [Formula: see text] be the fundamental group of a sapphire that admits the Sol geometry and is not a torus bundle. We determine a finite free resolution of [Formula: see text] over [Formula: see text] and calculate a partial diagonal approximation for this resolution. We also compute the cohomology rings [Formula: see text] for [Formula: see text] and [Formula: see text] for an odd prime [Formula: see text], and indicate how to compute the groups [Formula: see text] and the multiplicative structure given by the cup product for any system of coefficients [Formula: see text].


2019 ◽  
Vol 71 (03) ◽  
pp. 683-715 ◽  
Author(s):  
Christopher W. Scaduto ◽  
Matthew Stoffregen

AbstractWe compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.


2002 ◽  
Vol 324 (1) ◽  
pp. 105-133 ◽  
Author(s):  
Wei-ping Li ◽  
Zhenbo Qin ◽  
Weiqiang Wang

2000 ◽  
Vol 11 (05) ◽  
pp. 665-721 ◽  
Author(s):  
DUSA J. MCDUFF

This paper studies the (small) quantum homology and cohomology of fibrations p:P→S2 whose structural group is the group of Hamiltonian symplectomorphisms of the fiber (M, ω). It gives a proof that the rational cohomology splits additively as the vector space tensor product H*(M)⊗H*(S2), and investigates conditions under which the ring structure also splits, thus generalizing work of Lalonde–McDuff–Polterovich and Seidel. The main tool is a study of certain operations in the quantum homology of the total space P and of the fiber M, whose properties reflect the relations between the Gromov–Witten invariants of P and M. In order to establish these properties we further develop the language introduced in [22] to describe the virtual moduli cycle (defined by Liu–Tian, Fukaya–Ono, Li–Tian, Ruan and Siebert).


2018 ◽  
Vol 155 (1) ◽  
pp. 206-228
Author(s):  
Taras Panov ◽  
Stephen Theriault

If $K$ is a simplicial complex on $m$ vertices, the flagification of $K$ is the minimal flag complex $K^{f}$ on the same vertex set that contains $K$. Letting $L$ be the set of vertices, there is a sequence of simplicial inclusions $L\stackrel{}{\longrightarrow }K\stackrel{}{\longrightarrow }K^{f}$. This induces a sequence of maps of polyhedral products $(\text{}\underline{X},\text{}\underline{A})^{L}\stackrel{g}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K}\stackrel{f}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K^{f}}$. We show that $\unicode[STIX]{x1D6FA}f$ and $\unicode[STIX]{x1D6FA}f\circ \unicode[STIX]{x1D6FA}g$ have right homotopy inverses and draw consequences. For a flag complex $K$ the polyhedral product of the form $(\text{}\underline{CY},\text{}\underline{Y})^{K}$ is a co-$H$-space if and only if the 1-skeleton of $K$ is a chordal graph, and we deduce that the maps $f$ and $f\circ g$ have right homotopy inverses in this case.


2011 ◽  
Vol 18 (02) ◽  
pp. 241-258 ◽  
Author(s):  
Takao Hayami

We determine the ring structure of the Hochschild cohomology HH*(ℤ G) of the integral group ring of the semidihedral 2-group G = SD2r of order 2r.


Author(s):  
Michael Robinson

AbstractThe Dowker complex is an abstract simplicial complex that is constructed from a binary relation in a straightforward way. Although there are two ways to perform this construction—vertices for the complex are either the rows or the columns of the matrix representing the relation—the two constructions are homotopy equivalent. This article shows that the construction of a Dowker complex from a relation is a non-faithful covariant functor. Furthermore, we show that this functor can be made faithful by enriching the construction into a cosheaf on the Dowker complex. The cosheaf can be summarized by an integer weight function on the Dowker complex that is a complete isomorphism invariant for the relation. The cosheaf representation of a relation actually embodies both Dowker complexes, and we construct a duality functor that exchanges the two complexes.


Author(s):  
Peter Petersen ◽  
Matthias Wink

Abstract We show that compact Kähler manifolds have the rational cohomology ring of complex projective space provided a weighted sum of the lowest three eigenvalues of the Kähler curvature operator is positive. This follows from a more general vanishing and estimation theorem for the individual Hodge numbers. We also prove an analogue of Tachibana’s theorem for Kähler manifolds.


Sign in / Sign up

Export Citation Format

Share Document