parametric vibration
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhou Chen ◽  
Hongxin Lin ◽  
Deyuan Deng ◽  
Wanjie Xu ◽  
Hanwen Lu ◽  
...  

Pedestrian excitation may consequently cause large-scale lateral vibration of the long-span softness of footbridges. Considering the influence of structural geometric nonlinearity, a nonlinear lateral parametric vibration model is established based on the relationship between force and speed. Taking the London Millennium Footbridge as an example, the Galerkin method is applied to formulate parametric vibration equations. In addition, the multi-scale method is used to analyze the parametric vibration of footbridge system theoretically and numerically. The paper aims to find out the reasons for the large-scale vibration of the Millennium Footbridge by calculating the critical number of pedestrians, amplitude-frequency, and phase-frequency characteristics of the Millennium Footbridge during parametric vibration. On the other hand, the paper also studies the influence parameters of the vibration amplitude as well as simulates the dynamic response of the bridge during the whole process of pedestrians on the footbridge. Finally, the paper investigates influences of the time-delay effect on the system parameter vibration. Research shows that: the model established in the paper is reliable; the closer the walking frequency is to two times of the natural frequency, the fewer number of pedestrians are required to excite large vibrations; when the number of pedestrians exceeds the critical number in consideration of nonlinear vibration, the vibration amplitude tends to be stable constant-amplitude vibration, and the amplitude of vibration response is unstable constant-amplitude vibration when only linear vibration is considered; the following factors have an impact on the response amplitude, including the number of pedestrians on footbridge per unit time, damping, initial conditions, and the number of pedestrians in synchronized adjustment. At last, when considering the lag of the pedestrian’s force on the footbridge, the time-lag effect has no effect on the amplitude but has an effect on the time needed to reach a stable amplitude.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zengwei Guo ◽  
Pengfei Zi ◽  
Xuanbo He

In order to study the parametric vibration of stayed cables in a long cantilever bridge for a sightseeing platform, nonlinear parametric vibration equations of the stayed cables excited by the vibration of bridge deck and tower are derived. Then, a second-order differential equation is transformed into a first-order ordinary differential equation, which is solved by using the Runge–Kutta method. A finite element model of cables was also built to verify the solution of the Runge–Kutta method. Then, the inherent dynamic characteristics of the full structure and all the cables with different lengths were analyzed to discuss the potential risk of parametric vibration. The longest and shortest cables were taken as examples to explore their nonlinear vibration performance. The effects of damping ratio, excitation position, and amplitude on cables’ nonlinear vibration performance were investigated. The results show that it will be more efficient and convenient to use the Runge–Kutta method to calculate cables’ nonlinear vibration amplitude without loss of accuracy. In addition, short cables have more resonance zones compared to long cables. Especially, with the cable length shortening, the dominant frequencies of the dynamic response and its amplitude increase significantly, and the number of resonance zones also increases. However, excessive excitation amplitude will also cause multiple resonance zones in the cable. The parametric analysis results show that it is effective and efficient to mitigate the nonlinear vibration by adjusting the frequency relationship between the bridge and the cables, rather than by increasing the damping ratio.


Author(s):  
Zhiwen Wu ◽  
Hongyuan Dong ◽  
Huihuan Ma ◽  
Pengpeng Ni ◽  
Yangyang Xiao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Donglin Zhang ◽  
Rupeng Zhu ◽  
Miaomiao Li ◽  
Wuzhong Tan ◽  
Pingjun Li

Planetary gears are widely used in mechanical transmission systems, but the vibration and noise affect their reliability and life. In this paper, the torsional dynamic model of an encased differential planetary gear with coaxial contrarotating outputs considering the time-varying meshing stiffness, damping, and phase difference of all gear pairs is established. By solving the equations of the derived system, three types of natural frequencies with different multiplicities of the system are obtained. The multiscale method is used to study the parametric vibration stability caused by the time-varying meshing stiffness, and the results are verified by numerical simulation. The dynamic characteristics of elastic meshing force are analyzed from time domain and frequency domain. The variation of the dynamic load factor of each gear pair with input speed and the relationship between its peak position and the natural frequency of the derived system are discussed. The results show that there is an unequal coupling phenomenon of meshing frequency between the meshing forces of different planetary sets. In the absence of external excitation, the meshing stiffness parameters not only excite the main resonance response of the system but also cause superharmonic resonance, subharmonic resonance, and combined resonance.


2020 ◽  
Vol 23 (11) ◽  
pp. 2261-2275
Author(s):  
Shouying Li ◽  
Yuanyuan Wang ◽  
Qingyu Zeng ◽  
Zhengqing Chen

Stay cables on several cable-stayed bridges all over the world have been found to experience rain-wind-induced vibrations under the combined action of rain and wind. Meanwhile, the bridge deck might also have obvious oscillation under the wind and/or traffic loads. The coupled responses of a stay cable under the combined rain–wind and support excitations are numerically investigated in this article. The equations of motion of a three-dimensional continuous stay cable are derived by considering the high-order nonlinear components of the dynamic cable tension, together with the equation of motion of the rivulet on the cable surface. The forces induced by rain–wind excitation are determined by the quasi-steady theory, and the support excitation is achieved by the boundary condition. The coupled equations of the cable and the rivulet are numerically solved by using the finite difference method and the fourth-order Runge–Kutta method, respectively. The numerical results show that the high-order nonlinear components of the dynamic cable tension should be taken into account to numerically reproduce the parametric vibration of the stay cable, whereas they hardly have any effects on the rain-wind-induced vibration and the resonance vibration of the stay cable. The responses of stay cable under vertical support oscillation only and the rain–wind excitation only obtained from this study agree well with the literature results. Compared with the results induced by single-source excitation, the cable response amplitude under the combined excitations is smaller than that induced only by support excitation and larger than that induced only by rain–wind excitation. The rivulet is prone to be thrown from the cable surface if the parametric vibration of the stay cable is evoked.


Sign in / Sign up

Export Citation Format

Share Document