Entropy and rotation sets: A toy model approach

2016 ◽  
Vol 18 (05) ◽  
pp. 1550083 ◽  
Author(s):  
Tamara Kucherenko ◽  
Christian Wolf

Given a continuous dynamical system [Formula: see text] on a compact metric space [Formula: see text] and a continuous potential [Formula: see text], the generalized rotation set is the subset of [Formula: see text] consisting of all integrals of [Formula: see text] with respect to all invariant probability measures. The localized entropy at a point in the rotation set is defined as the supremum of the measure-theoretic entropies over all invariant measures whose integrals produce that point. In this paper, we provide an introduction to the theory of rotation sets and localized entropies. Moreover, we consider a shift map and construct a Lipschitz continuous potential, for which we are able to explicitly compute the geometric shape of the rotation set and its boundary measures. We show that at a particular exposed point on the boundary there are exactly two ergodic localized measures of maximal entropy.

2017 ◽  
Vol 39 (1) ◽  
pp. 201-224
Author(s):  
TAMARA KUCHERENKO ◽  
CHRISTIAN WOLF

We consider a continuous dynamical system $f:X\rightarrow X$ on a compact metric space $X$ equipped with an $m$-dimensional continuous potential $\unicode[STIX]{x1D6F7}=(\unicode[STIX]{x1D719}_{1},\ldots ,\unicode[STIX]{x1D719}_{m}):X\rightarrow \mathbb{R}^{m}$. We study the set of ground states $GS(\unicode[STIX]{x1D6FC})$ of the potential $\unicode[STIX]{x1D6FC}\cdot \unicode[STIX]{x1D6F7}$ as a function of the direction vector $\unicode[STIX]{x1D6FC}\in S^{m-1}$. We show that the structure of the ground state sets is naturally related to the geometry of the generalized rotation set of $\unicode[STIX]{x1D6F7}$. In particular, for each $\unicode[STIX]{x1D6FC}$ the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ forms a non-empty, compact and connected subset of a face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ of the rotation set associated with $\unicode[STIX]{x1D6FC}$. Moreover, every ground state maximizes entropy among all invariant measures with rotation vectors in $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$. We further establish the occurrence of several quite unexpected phenomena. Namely, we construct for any $m\in \mathbb{N}$ examples with an exposed boundary point (that is, $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ being a singleton) without a unique ground state. Further, we establish the possibility of a line segment face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ with a unique but non-ergodic ground state. Finally, we establish the possibility that the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ is a non-trivial line segment.


2018 ◽  
Vol 40 (2) ◽  
pp. 367-401 ◽  
Author(s):  
MICHAEL A. BURR ◽  
MARTIN SCHMOLL ◽  
CHRISTIAN WOLF

Let$f:X\rightarrow X$be a continuous dynamical system on a compact metric space$X$and let$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$be an$m$-dimensional continuous potential. The (generalized) rotation set$\text{Rot}(\unicode[STIX]{x1D6F7})$is defined as the set of all$\unicode[STIX]{x1D707}$-integrals of$\unicode[STIX]{x1D6F7}$, where$\unicode[STIX]{x1D707}$runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy$\unicode[STIX]{x210B}(w)$to each$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$. In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where$f$is a subshift of finite type. We prove that$\text{Rot}(\unicode[STIX]{x1D6F7})$is computable and that$\unicode[STIX]{x210B}(w)$is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general,$\unicode[STIX]{x210B}$is not continuous on the boundary of the rotation set when considered as a function of$\unicode[STIX]{x1D6F7}$and$w$. In particular,$\unicode[STIX]{x210B}$is, in general, not computable at the boundary of$\text{Rot}(\unicode[STIX]{x1D6F7})$.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850076 ◽  
Author(s):  
D. LA TORRE ◽  
E. MAKI ◽  
F. MENDIVIL ◽  
E. R. VRSCAY

We are concerned with the approximation of probability measures on a compact metric space [Formula: see text] by invariant measures of iterated function systems with place-dependent probabilities (IFSPDPs). The approximation is performed by moment matching. Associated with an IFSPDP is a linear operator [Formula: see text], where [Formula: see text] denotes the set of all infinite moment vectors of probability measures on [Formula: see text]. Let [Formula: see text] be a probability measure that we desire to approximate, with moment vector [Formula: see text]. We then look for an IFSPDP which maps [Formula: see text] as close to itself as possible in terms of an appropriate metric on [Formula: see text]. Some computational results are presented.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2021 ◽  
Vol 22 (2) ◽  
pp. 399
Author(s):  
Kholsaid Fayzullayevich Kholturayev

Although traditional and idempotent mathematics are "parallel'', by an application of the category theory we show that objects obtained the similar rules over traditional and idempotent mathematics must not be "parallel''. At first we establish for a compact metric space X the spaces P(X) of probability measures and I(X) idempotent probability measures are homeomorphic ("parallelism''). Then we construct an example which shows that the constructions P and I form distinguished functors from each other ("parallelism'' negation). Further for a compact Hausdorff space X we establish that the hereditary normality of I<sub>3</sub>(X)\ X implies the metrizability of X.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


2012 ◽  
Vol 21 (3) ◽  
pp. 330-357 ◽  
Author(s):  
GRAHAM BRIGHTWELL ◽  
MALWINA LUCZAK

A causal set is a countably infinite poset in which every element is above finitely many others; causal sets are exactly the posets that have a linear extension with the order-type of the natural numbers; we call such a linear extension a natural extension. We study probability measures on the set of natural extensions of a causal set, especially those measures having the property of order-invariance: if we condition on the set of the bottom k elements of the natural extension, each feasible ordering among these k elements is equally likely. We give sufficient conditions for the existence and uniqueness of an order-invariant measure on the set of natural extensions of a causal set.


2021 ◽  
pp. 2140012
Author(s):  
Zhang Chen ◽  
Bixiang Wang

This paper deals with invariant measures of fractional stochastic reaction–diffusion equations on unbounded domains with locally Lipschitz continuous drift and diffusion terms. We first prove the existence and regularity of invariant measures, and then show the tightness of the set of all invariant measures of the equation when the noise intensity varies in a bounded interval. We also prove that every limit of invariant measures of the perturbed systems is an invariant measure of the corresponding limiting system. Under further conditions, we establish the ergodicity and the exponentially mixing property of invariant measures.


Sign in / Sign up

Export Citation Format

Share Document