On the set of expansive measures

2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.

2020 ◽  
pp. 1-10
Author(s):  
NILSON C. BERNARDES ◽  
UDAYAN B. DARJI ◽  
RÔMULO M. VERMERSCH

Abstract Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.


2021 ◽  
Vol 22 (2) ◽  
pp. 399
Author(s):  
Kholsaid Fayzullayevich Kholturayev

Although traditional and idempotent mathematics are "parallel'', by an application of the category theory we show that objects obtained the similar rules over traditional and idempotent mathematics must not be "parallel''. At first we establish for a compact metric space X the spaces P(X) of probability measures and I(X) idempotent probability measures are homeomorphic ("parallelism''). Then we construct an example which shows that the constructions P and I form distinguished functors from each other ("parallelism'' negation). Further for a compact Hausdorff space X we establish that the hereditary normality of I<sub>3</sub>(X)\ X implies the metrizability of X.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Heng Liu ◽  
Fengchun Lei ◽  
Lidong Wang

Consider the surjective, continuous mapf:X→Xand the continuous mapf¯of𝒦(X)induced byf, whereXis a compact metric space and𝒦(X)is the space of all nonempty compact subsets ofXendowed with the Hausdorff metric. In this paper, we give a short proof that iff¯is Li-Yoke sensitive, thenfis Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke sensitivity offdoes not imply Li-Yorke sensitivity off¯.


2004 ◽  
Vol 04 (03) ◽  
pp. 373-384 ◽  
Author(s):  
DESHENG LI ◽  
P. E. KLOEDEN

The equi-attraction properties of uniform pullback attractors [Formula: see text] of nonautonomous dynamical systems (θ,ϕλ) with a parameter λ∈Λ, where Λ is a compact metric space, are investigated; here θ is an autonomous dynamical system on a compact metric space P which drives the cocycle ϕλon a complete metric state space X. In particular, under appropriate regularity conditions, it is shown that the equi-attraction of the family [Formula: see text] uniformly in p∈P is equivalent to the continuity of the setvalued mappings [Formula: see text] in λ with respect to the Hausdorff metric on the nonempty compact subsets of X.


2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150151
Author(s):  
Risong Li ◽  
Tianxiu Lu ◽  
Xiaofang Yang ◽  
Yongxi Jiang

Let [Formula: see text] be a nontrivial compact metric space with metric [Formula: see text] and [Formula: see text] be a continuous self-map, [Formula: see text] be the sigma-algebra of Borel subsets of [Formula: see text], and [Formula: see text] be a Borel probability measure on [Formula: see text] with [Formula: see text] for any open subset [Formula: see text] of [Formula: see text]. This paper proves the following results : (1) If the pair [Formula: see text] has the property that for any [Formula: see text], there is [Formula: see text] such that [Formula: see text] for any open subset [Formula: see text] of [Formula: see text] and all [Formula: see text] sufficiently large (where [Formula: see text] is the characteristic function of the set [Formula: see text]), then the following hold : (a) The map [Formula: see text] is topologically ergodic. (b) The upper density [Formula: see text] of [Formula: see text] is positive for any open subset [Formula: see text] of [Formula: see text], where [Formula: see text]. (c) There is a [Formula: see text]-invariant Borel probability measure [Formula: see text] having full support (i.e. [Formula: see text]). (d) Sensitivity of the map [Formula: see text] implies positive lower density sensitivity, hence ergodical sensitivity. (2) If [Formula: see text] for any two nonempty open subsets [Formula: see text], then there exists [Formula: see text] satisfying [Formula: see text] for any nonempty open subset [Formula: see text], where [Formula: see text] there exist [Formula: see text] with [Formula: see text].


2018 ◽  
Vol 40 (2) ◽  
pp. 367-401 ◽  
Author(s):  
MICHAEL A. BURR ◽  
MARTIN SCHMOLL ◽  
CHRISTIAN WOLF

Let$f:X\rightarrow X$be a continuous dynamical system on a compact metric space$X$and let$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$be an$m$-dimensional continuous potential. The (generalized) rotation set$\text{Rot}(\unicode[STIX]{x1D6F7})$is defined as the set of all$\unicode[STIX]{x1D707}$-integrals of$\unicode[STIX]{x1D6F7}$, where$\unicode[STIX]{x1D707}$runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy$\unicode[STIX]{x210B}(w)$to each$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$. In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where$f$is a subshift of finite type. We prove that$\text{Rot}(\unicode[STIX]{x1D6F7})$is computable and that$\unicode[STIX]{x210B}(w)$is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general,$\unicode[STIX]{x210B}$is not continuous on the boundary of the rotation set when considered as a function of$\unicode[STIX]{x1D6F7}$and$w$. In particular,$\unicode[STIX]{x210B}$is, in general, not computable at the boundary of$\text{Rot}(\unicode[STIX]{x1D6F7})$.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Lidong Wang ◽  
Yingcui Zhao ◽  
Yuelin Gao ◽  
Heng Liu

Let [Formula: see text] be a compact metric space and [Formula: see text] be an [Formula: see text]-tuple of continuous selfmaps on [Formula: see text]. This paper investigates Hausdorff metric Li–Yorke chaos, distributional chaos and distributional chaos in a sequence from a set-valued view. On the basis of this research, we draw the main conclusions as follows: (i) If [Formula: see text] has a distributionally chaotic pair, especially [Formula: see text] is distributionally chaotic, the strongly nonwandering set [Formula: see text] contains at least two points. (ii) We give a sufficient condition for [Formula: see text] to be distributionally chaotic in a sequence and chaotic in the strong sense of Li–Yorke. Finally, an example to verify (ii) is given.


2016 ◽  
Vol 38 (1) ◽  
pp. 143-154 ◽  
Author(s):  
CHRIS GOOD ◽  
JONATHAN MEDDAUGH

Let $f:X\rightarrow X$ be a continuous map on a compact metric space, let $\unicode[STIX]{x1D714}_{f}$ be the collection of $\unicode[STIX]{x1D714}$-limit sets of $f$ and let $\mathit{ICT}(f)$ be the collection of closed internally chain transitive subsets. Provided that $f$ has shadowing, it is known that the closure of $\unicode[STIX]{x1D714}_{f}$ in the Hausdorff metric coincides with $\mathit{ICT}(f)$. In this paper, we prove that $\unicode[STIX]{x1D714}_{f}=\mathit{ICT}(f)$ if and only if $f$ satisfies Pilyugin’s notion of orbital limit shadowing. We also characterize those maps for which $\overline{\unicode[STIX]{x1D714}_{f}}=\mathit{ICT}(f)$ in terms of a variation of orbital shadowing.


1979 ◽  
Vol 31 (1) ◽  
pp. 130-138 ◽  
Author(s):  
J. Grispolakis ◽  
E. D. Tymchatyn

A continuum will be a connected, compact, metric space. By a mapping we mean a continuous function. By a partially ordered space X we mean a continuum X together with a partial order which is closed when regarded as a subset of X × X. We let 2x (resp. C(X)) denote the hyperspace of closed subsets (resp. subcontinua) of X with the Vietoris topology which coincides with the topology induced by the Hausdorff metric. The hyperspaces 2X and C(X) are arcwise connected metric continua (see [3, Theorem 2.7]). If A ⊂ X we let C(A) denote the subspace of subcontinua of X which lie in A.If X is a partially ordered space we define two functions L, M : X → 2X by setting for each x ∊ X


Sign in / Sign up

Export Citation Format

Share Document