scholarly journals Existence and concentration of positive solutions for a p-fractional Choquard equation

2021 ◽  
Vol 6 (11) ◽  
pp. 12929-12951
Author(s):  
Xudong Shang ◽  

<abstract><p>In this work, we study the existence, multiplicity and concentration behavior of positive solutions for the following problem involving the fractional $ p $-Laplacian</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \varepsilon^{ps}(-\Delta )^{s}_{p}u + V(x)|u|^{p-2}u = \varepsilon^{\mu-N}(\frac{1}{|x|^{\mu}}\ast K|u|^{q})K(x)|u|^{q-2}u \hskip0.2cm\text{in}\hskip0.1cm \mathbb{R}^{N}, \end{eqnarray*} $\end{document} </tex-math></disp-formula></p> <p>where $ 0 &lt; s &lt; 1 &lt; p &lt; \infty $, $ N &gt; ps $, $ 0 &lt; \mu &lt; ps $, $ p &lt; q &lt; \frac{p^{*}_{s}}{2}(2-\frac{\mu}{N}) $, $ (-\Delta)^{s}_{p} $ is the fractional $ p $-Laplacian and $ \varepsilon &gt; 0 $ is a small parameter. Under certain conditions on $ V $ and $ K $, we prove the existence of a positive ground state solution and express the location of concentration in terms of the potential functions $ V $ and $ K $. In particular, we relate the number of solutions with the topology of the set where $ V $ attains its global minimum and $ K $ attains its global maximum.</p></abstract>

2020 ◽  
Vol 120 (3-4) ◽  
pp. 199-248
Author(s):  
Jianhua Chen ◽  
Xianjiu Huang ◽  
Dongdong Qin ◽  
Bitao Cheng

In this paper, we study the following generalized quasilinear Schrödinger equation − div ( ε 2 g 2 ( u ) ∇ u ) + ε 2 g ( u ) g ′ ( u ) | ∇ u | 2 + V ( x ) u = K ( x ) | u | p − 2 u + | u | 22 ∗ − 2 u , x ∈ R N , where N ⩾ 3, ε > 0, 4 < p < 22 ∗ , g ∈ C 1 ( R , R + ), V ∈ C ( R N ) ∩ L ∞ ( R N ) has a positive global minimum, and K ∈ C ( R N ) ∩ L ∞ ( R N ) has a positive global maximum. By using a change of variable, we obtain the existence and concentration behavior of ground state solutions for this problem with critical growth, and establish a phenomenon of exponential decay. Moreover, by Ljusternik–Schnirelmann theory, we also prove the existence of multiple solutions.


2019 ◽  
Vol 19 (4) ◽  
pp. 779-795
Author(s):  
Guangze Gu ◽  
Xianhua Tang

AbstractIn this paper, we consider the Kirchhoff equation with Hartree-type nonlinearity\left\{\begin{aligned} \displaystyle-&\displaystyle\biggl{(}\varepsilon^{2}a+% \varepsilon b\int_{\mathbb{R}^{3}}\lvert\nabla u\rvert^{2}\mathop{}\!dx\biggr{% )}\Delta u+V(x)u=\varepsilon^{\mu-3}\biggl{(}\int_{\mathbb{R}^{3}}\frac{K(y)F(% u(y))}{\lvert x-y\rvert^{\mu}}\mathop{}\!dy\biggr{)}K(x)f(u),\\ &\displaystyle u\in H^{1}(\mathbb{R}^{3}),\end{aligned}\right.where {\varepsilon>0} is a small parameter, {a,b>0}, {\mu\in(0,3)}, {V,K} are two positive continuous function and F is the primitive function of f which is superlinear but subcritical at infinity in the sense of the Hardy–Littlewood–Sobolev inequality. We show that the equation admits a positive ground state solution for {\varepsilon>0} sufficiently small. Furthermore, we prove that these ground state solutions concentrate around such points which are both the minima points of the potential V and the maximum points of the potential K as {\varepsilon\to 0}.


2019 ◽  
Vol 21 (06) ◽  
pp. 1850027 ◽  
Author(s):  
Zhipeng Yang ◽  
Yuanyang Yu ◽  
Fukun Zhao

We are concerned with the existence and concentration behavior of ground state solutions of the fractional Schrödinger–Poisson system with critical nonlinearity [Formula: see text] where [Formula: see text] is a small parameter, [Formula: see text], [Formula: see text], [Formula: see text] denotes the fractional Laplacian of order [Formula: see text] and satisfies [Formula: see text]. The potential [Formula: see text] is continuous and positive, and has a local minimum. We obtain a positive ground state solution for [Formula: see text] small, and we show that these ground state solutions concentrate around a local minimum of [Formula: see text] as [Formula: see text].


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 151
Author(s):  
Huxiao Luo ◽  
Shengjun Li ◽  
Chunji Li

In this paper, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Jun Wang ◽  
Lixin Tian ◽  
Junxiang Xu ◽  
Fubao Zhang

AbstractIn this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson systemwhere ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that b(x) has a maximum. We prove that the system has a positive ground state solution


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


Author(s):  
Jun Wang ◽  
Tianqing An ◽  
Fubao Zhang

In this paper, we study the existence, multiplicity and concentration of positive solutions for a class of quasilinear problemswhere —Δp is the p-Laplacian operator for is a small parameter, f(u) is a superlinear and subcritical nonlinearity that is continuous in u. Using a variational method, we first prove that for sufficiently small ε > 0 the system has a positive ground state solution uε with some concentration phenomena as ε → 0. Then, by the minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set of the global minima of the potentials. Finally, we obtain some sufficient conditions for the non-existence of ground state solutions.


2018 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Dongdong Qin ◽  
Yubo He ◽  
Xianhua Tang

AbstractIn this paper, we consider the following critical Kirchhoff type equation:By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when 3 < q < 5. The relation between the number of maxima of Q and the number of positive solutions for the problem is also investigated.


Sign in / Sign up

Export Citation Format

Share Document