scholarly journals General decay and well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation with memory

Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1745-1773
Author(s):  
Salah Boulaaras ◽  
Abdelbaki Choucha ◽  
Djamel Ouchenane

In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan-Moore-Gibson-Thompson (JMGT) equation with the presence of both memory. Using the well known energy method combined with Lyapunov functionals approach, we prove a general decay result, and we show a local existence result in appropriate function spaces. Finally, we prove a global existence result for small data, and we prove the uniqueness of the generalized solution.

Author(s):  
Reinhard Racke ◽  
Belkacem Said-Houari

We consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. We show a local existence result in appropriate function spaces, and, using the energy method together with a bootstrap argument, we prove a global existence result for small data, without using the linear decay. Finally, polynomial decay rates in time for a norm related to the solution will be obtained.


2016 ◽  
Vol 16 (06) ◽  
pp. 1650019
Author(s):  
Lin Lin ◽  
Guangying Lv ◽  
Wei Yan

This paper is devoted to the Cauchy problem for a stochastic higher order modified-Camassa–Holm equation [Formula: see text] The local existence and uniqueness with initial data [Formula: see text], [Formula: see text] and [Formula: see text], is established. The limit behaviors of the solution are examined as [Formula: see text].


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


Author(s):  
Michel Molina Del Sol ◽  
Eduardo Arbieto Alarcon ◽  
Rafael José Iorio

In this study, we continue our study of the Cauchy problem associated with the Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain types of porous media. Here, we will consider the flow in the upper half-space \[ \mathbb{R}_{+}^{3}=\left\{\left(x,y,z\right) \in\mathbb{R}^{3}\left\vert z\geqslant 0\right.\right\}, \] under the assumption that the plane $z=0$ is impenetrable to the fluid. This means that we will have to introduce boundary conditions that must be attached to the Brinkman equations. We study local and global well-posedness in appropriate Sobolev spaces introduced below, using Kato's theory for quasilinear equations, parabolic regularization and a comparison principle for the solutions of the problem.


2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yongsheng Mi ◽  
Chunlai Mu ◽  
Weian Tao

We study the Cauchy problem of a weakly dissipative modified two-component periodic Camassa-Holm equation. We first establish the local well-posedness result. Then we derive the precise blow-up scenario and the blow-up rate for strong solutions to the system. Finally, we present two blow-up results for strong solutions to the system.


Sign in / Sign up

Export Citation Format

Share Document