scholarly journals The method of Puiseux series and invariant algebraic curves

Author(s):  
Maria V. Demina

An explicit expression for the cofactor related to an irreducible invariant algebraic curve of a polynomial dynamical system in the plane is derived. A sufficient condition for a polynomial dynamical system in the plane to have a finite number of irreducible invariant algebraic curves is obtained. All these results are applied to Liénard dynamical systems [Formula: see text], [Formula: see text] with [Formula: see text]. The general structure of their irreducible invariant algebraic curves and cofactors is found. It is shown that Liénard dynamical systems with [Formula: see text] can have at most two distinct irreducible invariant algebraic curves simultaneously and, consequently, are not integrable with a rational first integral.

2020 ◽  
Vol 150 (6) ◽  
pp. 3231-3251 ◽  
Author(s):  
Maria V. Demina ◽  
Claudia Valls

AbstractWe present the complete classification of irreducible invariant algebraic curves of quadratic Liénard differential equations. We prove that these equations have irreducible invariant algebraic curves of unbounded degrees, in contrast with what is wrongly claimed in the literature. In addition, we classify all the quadratic Liénard differential equations that admit a Liouvillian first integral.


Author(s):  
Colin Christopher ◽  
Jaume Llibre ◽  
Chara Pantazi ◽  
Sebastian Walcher

Given an algebraic curve in the complex affine plane, we describe how to determine all planar polynomial vector fields which leave this curve invariant. If all (finite) singular points of the curve are non-degenerate, we give an explicit expression for these vector fields. In the general setting we provide an algorithmic approach, and as an alternative we discuss sigma processes.


2005 ◽  
Vol 15 (03) ◽  
pp. 1033-1044 ◽  
Author(s):  
GRZEGORZ ŚWIRSZCZ

Given a system of two autonomous ordinary differential equations whose right-hand sides are polynomials, it is very hard to tell if any nonsingular trajectories of the system are contained in algebraic curves. We present an effective method of deciding whether a given system has an invariant algebraic curve of a given degree. The method also allows the construction of examples of polynomial systems with invariant algebraic curves of a given degree. We present the first known example of a degree 6 algebraic saddle-loop for polynomial system of degree 2, which has been found using the described method. We also present some new examples of invariant algebraic curves of degrees 4 and 5 with an interesting geometry.


2021 ◽  
Vol 38 (1) ◽  
pp. 67-94
Author(s):  
DAVID CHEBAN ◽  

In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.


2021 ◽  
Author(s):  
Elena Karachanskaya

In this chapter we consider the invariant method for stochastic system with strong perturbations, and its application to many different tasks related to dynamical systems with invariants. This theory allows constructing the mathematical model (deterministic and stochastic) of actual process if it has invariant functions. These models have a kind of jump-diffusion equations system (stochastic differential Itô equations with a Wiener and a Poisson paths). We show that an invariant function (with probability 1) for stochastic dynamical system under strong perturbations exists. We consider a programmed control with Prob. 1 for stochastic dynamical systems – PSP1. We study the construction of stochastic models with invariant function based on deterministic model with invariant one and show the results of numerical simulation. The concept of a first integral for stochastic differential equation Itô introduce by V. Doobko, and the generalized Itô – Wentzell formula for jump-diffusion function proved us, play the key role for this research.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


Sign in / Sign up

Export Citation Format

Share Document