Derivation of New Transcendental Member Stiffness Determinant for Vibrating Frames

2003 ◽  
Vol 03 (02) ◽  
pp. 299-305 ◽  
Author(s):  
F. W. Williams ◽  
D. Kennedy

Transcendental dynamic member stiffness matrices for vibration problems arise from solving the governing differential equations to avoid the conventional finite element method (FEM) discretization errors. Assembling them into the overall dynamic structural stiffness matrix gives a transcendental eigenproblem, whose eigenvalues (natural frequencies or their squares) are found with certainty using the Wittrick–Williams algorithm. This paper gives equations for the recently discovered transcendental member stiffness determinant, which equals the appropriately normalized FEM dynamic stiffness matrix determinant of a clamped ended member modelled by infinitely many elements. Multiplying the overall transcendental stiffness matrix determinant by the member stiffness determinants removes its poles to improve curve following eigensolution methods. The present paper gives the first ever derivation of the Bernoulli–Euler member stiffness determinant, which was previously found by trial-and-error and then verified. The derivation uses the total equivalence of the transcendental formulation and an infinite order FEM formulation, which incidentally gives insights into conventional FEM results.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Emir Gülümser ◽  
Uğur Güdükbay ◽  
Sinan Filiz

We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM). Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.


2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Baizhan Xia ◽  
Dejie Yu

For the frequency response analysis of the structural-acoustic system with interval parameters, a modified interval perturbation finite element method (MIPFEM) is proposed. In the proposed method, the interval dynamic equilibrium equation of the uncertain structural-acoustic system is established. The interval structural-acoustic dynamic stiffness matrix and the interval force vector are expanded by using the first-order Taylor series; the inversion of the invertible interval structural-acoustic dynamic stiffness matrix is approximated by employing a modified approximate interval-value Sherman–Morrison–Woodbury formula. The proposed method is implemented at an element-by-element level in the finite element framework. Numerical results on a shell structural-acoustic system with interval parameters verify the accuracy and efficiency of the proposed method.


1980 ◽  
Vol 17 (03) ◽  
pp. 341-350
Author(s):  
Robert E. Sandstrom ◽  
N. Pharr Smith

There are several approaches to the prediction of global deckhouse vibration where the deckhouse natural frequencies lie close to the blade rate exciting frequencies. This paper discusses several approaches and recommends the eigenvalue analysis procedures as the most useful design tool for the early prediction of deckhouse vibration problems. Three eigenvalue analysis procedures are presented: the Hirowatari method—an empirical approach; the simplistic modeling method—a simple analytical approach; and the finite-element method—a more sophisticated analytical approach. The need for simplicity and accuracy is emphasized. Two example problems are included to demonstrate the merits of the eigenvalue analysis procedures.


2020 ◽  
Vol 173 ◽  
pp. 04002
Author(s):  
Chun Lin Liu ◽  
Shuo Zhang ◽  
Meng Xiong Tang ◽  
He Song Hu ◽  
Zhen Kun Hou ◽  
...  

A simplified method is presented to investigate the dynamic response of rock-socketed piles embedded in a layered foundation. The finite element method is utilized to derive the dynamic stiffness matrix equations of the pile modelled as a 1D bar, and the exact stiffness matrix method is employed to establish the flexibility matrix equations of the foundation modelled as a 3D body. According to the pilesoil interaction condition, these matrices are incorporated together to obtain the solution for the dynamic response of rock-socketed piles. Finally, some numerical results are given to illustrate the influence of rocksocketed depth on the pile vertical impedance.


1993 ◽  
Vol 115 (4) ◽  
pp. 468-476 ◽  
Author(s):  
T. S. Liu ◽  
J. C. Lin

Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.


2000 ◽  
Vol 7 (1) ◽  
pp. 23-28 ◽  
Author(s):  
K.L. Chan ◽  
F.W. Williams

This paper presents theory, physical insight and results for mode orthogonality of piecewise continuous structures, including both coincident and non-coincident natural frequencies. The structures are ones for which exact member equations have been obtained by solving the governing differential equations, e.g. as can be done for members of plane frames or prismatic plate assemblies. Such member equations are transcendental functions of the distributed member mass and the frequency. They are used to obtain a transcendental overall stiffness matrix for the structure, from which the natural frequencies are extracted by using the Wittrick-Williams algorithm, prior to using any existing method to find the modes which are examined from the orthogonality viewpoint in this paper. The natural frequencies and modes found are the exact values for the structure in the sense that the usual finite element method approximations are avoided.


2002 ◽  
Vol 29 (1) ◽  
pp. 181-184 ◽  
Author(s):  
Shi-Jun Zhou

In this paper, a rectangular plate element for the finite-element method, which takes into consideration the stiffening effect of dead loads, is proposed. The element stiffness matrices that include the effect of dead loads are derived. The effect of dead loads on dynamic behaviors of plates is analyzed using the finite-element method. It is shown that the stiffness of plates increases when the effect of dead loads is included in the calculation and that the effect is more significant for plates with a smaller stiffness. The validity of the proposed procedure is confirmed by numerical examples. Although the finite-element results obtained are in agreement with the approximate closed-form solutions, the proposed method based on a finite-element formulation is more easily applied to practical structures under various support conditions and various types of dead loads.Key words: load-induced stiffness matrix of plate, stiffening effect of dead loads.


1993 ◽  
Vol 115 (4) ◽  
pp. 524-528 ◽  
Author(s):  
M. Krawczuk ◽  
W. M. Ostachowicz

The influence of transverse, one-edge open cracks on the natural frequencies of the cantilever beam subjected to vertical loads is analyzed. A finite element method (FE) is used for modelling the beam. A part of the cracked beam is modelled by beam finite elements with an open crack. Parts of the beam without a crack are modelled by standard beam finite elements. An algorithm of a linear stiffness matrix and a geometrical stiffness matrix calculation for a cracked element is presented. The results of numerical calculations obtained for the presented model are compared with the results of analytical calculations given in the literature and also with the results of numerical calculations obtained for a model with geometrical stiffness matrix of uncracked elements.


Sign in / Sign up

Export Citation Format

Share Document