A FURTHER STUDY OF FLEXURAL-TORSIONAL BUCKLING OF ELASTIC ARCHES

2005 ◽  
Vol 05 (02) ◽  
pp. 163-183 ◽  
Author(s):  
Y.-L. PI ◽  
M. A. BRADFORD ◽  
N. S. TRAHAIR ◽  
Y. Y. CHEN

This paper uses both a virtual work approach and a static equilibrium approach to study the elastic flexural-torsional buckling of circular arches under uniform bending, or under uniform compression. In most studies of the elastic flexural-torsional buckling of arches under uniform compression produced by uniformly-distributed radial loads, the directions of the radial loads are conventionally assumed not to change but to remain parallel to their initial directions during buckling. In practice, the uniform compression may be produced by hydrostatic loads or by uniformly-distributed radial loads that are directed to a specific point during buckling. In addition, there are discrepancies between existing solutions for the elastic flexural-torsional buckling moment and load of arches under uniform bending or under uniform compression which need to be clarified. Closed form solutions for the buckling moment and load are developed. The discrepancies among the existing solutions for the elastic flexural-torsional buckling moment and load of arches are clarified and the sources for the discrepancies are identified. It is found that the lateral components of hydrostatic loads and of uniformly-distributed radial loads that are always directed toward the center of the arch increase the flexural-torsional buckling resistance of an arch under uniform compression. It is also found that first-order buckling deformations are sufficient for static equilibrium approaches for the flexural-torsional buckling analysis of arches. The rational static equilibrium approach for the flexural-torsional buckling in the present study is effective.

2005 ◽  
pp. 47-66 ◽  
Author(s):  
Y.L. Pi ◽  
◽  
M.A. Bradford ◽  
Y.Y. Chen ◽  
◽  
...  

2021 ◽  
Vol 2130 (1) ◽  
pp. 012014
Author(s):  
K Falkowicz

Abstract The work presents a thin-walled plate element with the central rectangular cut-out which can be use as an elastic or load-bearing element. Plates were made of carbon epoxy laminate and subjected to uniform compression. Plates were simply supported on shorter edges, and loaded axial load. The study included analysis of the critical and weakly post-critical behavior using experimental and numerical methods. Numerical analysis was performed with using linear analysis of eigenvalue problem to determination critical loads. The second step connected nonlinear analysis of structure with initiated geometrically imperfection corresponding to the flexural-torsional buckling mode of the plate. To the numerical calculations the commercial ABAQUS program was used.


2017 ◽  
Vol 25 (2) ◽  
pp. 89-105
Author(s):  
Marian Giżejowski ◽  
Zbigniew Stachura

Abstract Steel I-section members subjected to compression a monoaxial bending about the major axis are dealt with in this paper. The current Eurocode’s design procedure of such members is based on a set of two interpolation equations. In this paper a simple and yet consistent Ayrton-Perry methodology is presented that for beam-columns yields the Ayrton-Perry design strategy similar to that utilized in the steel Eurocodes for design of beams and columns but not used so far for the beam-column design. The results from developed design criterion are compared with those of Method 1 of Eurocode 3 and the Ayrton-Perry formulation of a different format that has been recently published.


2014 ◽  
Vol 21 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Yeliz Pekbey ◽  
Esmaeil Ghanbari

AbstractThe flexural-torsional buckling of thin-walled pultruded fiber-reinforced plastic (FRP) members composed of unstiffened, stiffened cruciform- and I-shaped sections under uniform compressive loads was investigated using finite element methods (FEM). As the basic method, an eigenvalue solution using the minimum potential energy method was utilized to obtain the critical buckling stress and buckling mode shapes. FEM results were compared with the closed-form solutions and literature results. Furthermore, a parametric study was carried out to investigate the different cross-section geometries and span lengths on the critical buckling stresses and buckling mode shapes, that is, flexural, torsional, or mixed buckling.


2019 ◽  
Vol 67 (3) ◽  
pp. 142-154 ◽  
Author(s):  
M. Y. Abdollahzadeh Jamalabadi ◽  
Moon K. Kwak

This study presents the analytical solution and experimental investigation of the galloping energy harvesting from oscillating elastic cantilever beam with a rigid mass. A piezoelectric wafer was attached to galloping cantilever beam to harvest vibrational energy in electric charge form. Based on Euler-Bernoulli beam assumption and piezoelectric constitutive equation, kinetic energy and potential energy of system were obtained for the proposed structure. Virtual work by generated charge and galloping force applied onto the rigid mass was obtained based on Kirchhoff's law and quasistatic assumption. Nonlinear governing electro-mechanical equations were then obtained using Hamilton's principle. As the system vibrates by self-exciting force, the fundamental mode is the only one excited by galloping. Hence, multi-degreeof-freedom equation of motion is simplified to one-degree-of-freedom model. In this study, closed-form solutions for electro-mechanical equations were obtained by using multi-scale method. Using these solutions, we can predict galloping amplitude, voltage amplitude and harvested power level. Numerical and experimental results are presented and discrepancies between experimental and numerical results are fully discussed.


Sign in / Sign up

Export Citation Format

Share Document