buckling resistance
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 82)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Vu Thanh Long ◽  
Hoang Tung

Abstract Owing to mathematical and geometrical complexities, there is an evident lack of stability analyses of thick closed shell structures with porosity. The present work aims to analyze the effects of porosities, elasticity of edge constraint and surrounding elastic media on the buckling resistance capacity of thick functionally graded material (FGM) toroidal shell segments subjected to external pressure, elevated temperature and the combined action of these loads. The volume fractions of constituents are varied across the thickness according to power law functions and effective properties of the FGM are determined using a modified rule of mixture. The porosities exist in the FGM through even and uneven distributions. Governing equations are based on a higher order shear deformation theory taking into account interactive pressure from surrounding elastic media. These equations are analytically solved and closed-form expressions of buckling loads are derived adopting the two-term form of deflection along with Galerkin method. Parametric studies indicate that the porosities have beneficial and deteriorative influences on the buckling resistance capacity of thermally loaded and pressure loaded porous FGM toroidal shell segments, respectively. Furthermore, tangential constraints of edges lower the buckling resistance capacity of the shells, especially at elevated temperatures.


Author(s):  
Si-Ming Zhou ◽  
Jing-Zhong Tong ◽  
Gen-Shu Tong ◽  
Zhang Lei ◽  
Xiang Jiang ◽  
...  

Concrete-filled steel tubular (CFST) column has been widely used in engineering practice. In the process of assembling two columns to form a slender member, assembling errors (AE) are inevitably produced at the section of connection. When the AE are too large, the global buckling resistance of slender column would be significantly affected. Therefore, it is necessary to investigate the influence of AE on the stability performance of slender CFST columns. In this study, an axial compressive test involving three CFST columns with AE (AE-CFST columns) was conducted. A refined finite element (FE) model is established for further parametric analysis. Based on a simplified analytical model by analyzing the isolated steel connecting plate, a theoretical formula is proposed for predicting the critical thickness [Formula: see text] of the connecting plate. When the thickness [Formula: see text] of the connecting plate meets its requirement, the failure at the section of connection caused by AE could be effectively prevented. Stability design curves considering the influence of AE ratio (the ratio between assembling error and sectional depth of column) are proposed based on numerous FE examples. It is found that the proposed design curves are reliable for the design of AE-CFST columns with different AE ratios.


2022 ◽  
Vol 170 ◽  
pp. 108592
Author(s):  
Felipe Piana Vendramell Ferreira ◽  
Rabee Shamass ◽  
Vireen Limbachiya ◽  
Konstantinos Daniel Tsavdaridis ◽  
Carlos Humberto Martins

2022 ◽  
Vol 170 ◽  
pp. 108638
Author(s):  
Rohola Rahnavard ◽  
Hélder D. Craveiro ◽  
Rui A. Simões ◽  
Luís Laím ◽  
Aldina Santiago

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 25
Author(s):  
Paweł Błażejewski

This paper presents the process of developing a new procedure for estimating the buckling capacity of spherical shells. This procedure is based entirely on the assumptions included in the standard mentioned, EN-1993-1-6 and also becomes a complement of EDR5th by unifying provisions included in them. This procedure is characterized by clarity and its algorithm is characterized by a low degree of complexity. While developing the procedure, no attempt was made to change the main postulates accompanying the dimensions of the spherical shells. The result is a simple engineering approach to the difficult problem of determining the buckling capacity of a spherical shell. In spite of the simple calculation algorithm for estimating the buckling capacity of spherical shells, the results obtained reflect extremely accurately the behavior of real spherical shells, regardless of their geometry and the material used to manufacture them.


2021 ◽  
Vol 7 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Chayut Ngamkhanong ◽  
Lichen Ren

This paper aims to quantify and assess the reliability of mast structures as a part of ensuring structure safety. The mast structure is a basic aspect of the overhead line electrification equipment (OHLE) used in railway systems. This structure is very important as the failure of structure leads to the failure of an electric system that supplies the power to the train. To ensure structural safety and reliability, this paper thus analyses the reliability index of the mast, stay tube, and bracket tube structures. According to Eurocode, buckling resistance under compression of these parts were calculated based on specific material properties, and the load condition of these structures is based on Australian Railcorp document TMC331. In this paper, the strength load combination with the wind loading on the wire at 45° on the track is considered in particular as being the worst load combination for structures to bear, and the random variables used to affect reliability probabilistic analysis. Various parameters including self-weight, wind load, dimension parameters, materials, geometrical properties are taken into consideration. Statistical models of these parameters are taken from previous studies. The reliability index value was calculated via quantification of structure reliability using the first-order reliability method (FORM). Finally, a sensitivity analysis is used to evaluate the impacts of yield strength, length, cross-section, density, and load combination on reliability. The obtained results show that increasing length of structure can potentially reduce the reliability of mast structure to buckling resistance while the density of material also plays a major role in the reliability index. The findings will provide the structural safety criteria of the railway mast structure and improve the standard design to mitigate the risks and unplanned maintenance due to the uncertainties.


Author(s):  
Molwane O.B ◽  
◽  
Agarwal A ◽  
Letsatsi M.T ◽  

In this research, the buckling of stiffened rectangular plate with square opening is studied using techniques of FEA. The stiffener used for analysis is I shaped placed on edges and in vertical configuration. Critical buckling loads are determined from load multiplier values obtained from FEA simulation. The features of stiffener are further optimized with Taguchi response technique to acquire essential responses of variables with respect to yield variables. The sensitivities of various optimization parameters are also determined. The results indicated that substantial enhancement in buckling resistance can be achieved through optimized dimensions of stiffeners. For safety-factor least both lower width and upper width shows positive sensitivities with lower width sensitivity rate is 54.041 (positive) and upper width rate is additionally 54.041 (positive). Hence, both upper width measurements and lower width has same impact on factor noticed for SPSW.


Sign in / Sign up

Export Citation Format

Share Document