Fuzzy Transform-Based Fusion of Multiple Images

2017 ◽  
Vol 17 (02) ◽  
pp. 1750008 ◽  
Author(s):  
Meenu Manchanda ◽  
Rajiv Sharma

Extensive development has taken place in the field of image fusion and various algorithms of image fusion have attracted the attention of many researchers in the recent past. Various algorithms of image fusion are used to combine information from multiple source images into a single fused image. In this paper, fusion of multiple images using fuzzy transform is proposed. Images to be fused are initially decomposed into same size blocks. These blocks are then fuzzy transformed and fused using maxima coefficient value-based fusion rule. Finally, the fused image is obtained by performing inverse fuzzy transform. The performance of the proposed algorithm is evaluated by performing experiments on multifocus, medical and visible/infrared images. Further, the performance of the proposed algorithm is compared with the state-of-the-art image fusion algorithms, both subjectively and objectively. Experimental results and comparative study show that the proposed fusion algorithm fuses the multiple images effectively and produces better fusion results for medical and visible/infrared images.

2021 ◽  
Vol 3 (1) ◽  
pp. 68-82
Author(s):  
Harpreet Kaur ◽  
◽  
Deepika Koundal ◽  
Virendar Kadyan ◽  
Navneet Kaur ◽  
...  

In medical domain, various multimodalities such as Computer tomography (CT) and Magnetic resonance imaging (MRI) are integrated into a resultant fused image. Image fusion (IF) is a method by which vital information can be preserved by extracting all important information from the multiple images into the resultant fused image. The analytical and visual image quality can be enhanced by the integration of different images. In this paper, a new algorithm has been proposed on the basis of guided filter with new fusion rule for the fusion of different imaging modalities such as MRI and Fluorodeoxyglucose images of brain for the detection of tumor. The performance of the proposed method has been evaluated and compared with state-of-the-art image fusion techniques using various qualitative as well as quantitative evaluation metrics. From the results, it has been observed that more information has achieved on edges and content visibility is also high as compared to the other techniques which makes it more suitable for real applications. The experimental results are evaluated on the basis of with-reference and without-references metric such as standard deviation, entropy, peak signal to noise ratio, mutual information etc.


2013 ◽  
Vol 401-403 ◽  
pp. 1381-1384 ◽  
Author(s):  
Zi Juan Luo ◽  
Shuai Ding

t is mostly difficult to get an image that contains all relevant objects in focus, because of the limited depth-of-focus of optical lenses. The multifocus image fusion method can solve the problem effectively. Nonsubsampled Contourlet transform has varying directions and multiple scales. When the Nonsubsampled contourlet transform is introduced to image fusion, the characteristics of original images are taken better and more information for fusion is obtained. A new method of multi-focus image fusion based on Nonsubsampled contourlet transform (NSCT) with the fusion rule of region statistics is proposed in this paper. Firstly, different focus images are decomposed using Nonsubsampled contourlet transform. Then low-bands are integrated using the weighted average, high-bands are integrated using region statistics rule. Next the fused image will be obtained by inverse Nonsubsampled contourlet transform. Finally the experimental results are showed and compared with those of method based on Contourlet transform. Experiments show that the approach can achieve better results than the method based on contourlet transform.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 904
Author(s):  
Shah Rukh Muzammil ◽  
Sarmad Maqsood ◽  
Shahab Haider ◽  
Robertas Damaševičius

Technology-assisted clinical diagnosis has gained tremendous importance in modern day healthcare systems. To this end, multimodal medical image fusion has gained great attention from the research community. There are several fusion algorithms that merge Computed Tomography (CT) and Magnetic Resonance Images (MRI) to extract detailed information, which is used to enhance clinical diagnosis. However, these algorithms exhibit several limitations, such as blurred edges during decomposition, excessive information loss that gives rise to false structural artifacts, and high spatial distortion due to inadequate contrast. To resolve these issues, this paper proposes a novel algorithm, namely Convolutional Sparse Image Decomposition (CSID), that fuses CT and MR images. CSID uses contrast stretching and the spatial gradient method to identify edges in source images and employs cartoon-texture decomposition, which creates an overcomplete dictionary. Moreover, this work proposes a modified convolutional sparse coding method and employs improved decision maps and the fusion rule to obtain the final fused image. Simulation results using six datasets of multimodal images demonstrate that CSID achieves superior performance, in terms of visual quality and enriched information extraction, in comparison with eminent image fusion algorithms.


2010 ◽  
Vol 20-23 ◽  
pp. 45-51
Author(s):  
Xiang Li ◽  
Yue Shun He ◽  
Xuan Zhan ◽  
Feng Yu Liu

Direction transform; image fusion; infrared images; fusion rule; anisotropic Abstract Based on analysing the feature of infrared and the visible, this paper proposed an improved algorithm using Directionlet transform.The feature is like this: firstly, separate the color visible images to get the component images, and then make anisotropic decomposition for component images and inrared images, after analysing these images, process them according to regional energy rules ,finally incorporate the intense color to get the fused image. The simulation results shows that,this algorithm can effectively fuse infrared and the visible image, moreover, not only the fused images can maintain the environment details, but also underline the edge features, which applies to fusion with strong edges, therefore,this algorithm is of robust and convenient.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 247
Author(s):  
Areeba Ilyas ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Multi-focus image fusion is the process of combining focused regions of two or more images to obtain a single all-in-focus image. It is an important research area because a fused image is of high quality and contains more details than the source images. This makes it useful for numerous applications in image enhancement, remote sensing, object recognition, medical imaging, etc. This paper presents a novel multi-focus image fusion algorithm that proposes to group the local connected pixels with similar colors and patterns, usually referred to as superpixels, and use them to separate the focused and de-focused regions of an image. We note that these superpixels are more expressive than individual pixels, and they carry more distinctive statistical properties when compared with other superpixels. The statistical properties of superpixels are analyzed to categorize the pixels as focused or de-focused and to estimate a focus map. A spatial consistency constraint is ensured on the initial focus map to obtain a refined map, which is used in the fusion rule to obtain a single all-in-focus image. Qualitative and quantitative evaluations are performed to assess the performance of the proposed method on a benchmark multi-focus image fusion dataset. The results show that our method produces better quality fused images than existing image fusion techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Peiguang Wang ◽  
Hua Tian ◽  
Wei Zheng

Nonsubsampled Contourlet transform (NSCT) has properties such as multiscale, localization, multidirection, and shift invariance, but only limits the signal analysis to the time frequency domain. Fractional Fourier transform (FRFT) develops the signal analysis to fractional domain, has many super performances, but is unable to attribute the signal partial characteristic. A novel image fusion algorithm based on FRFT and NSCT is proposed and demonstrated in this paper. Firstly, take FRFT on the two source images to obtain fractional domain matrices. Secondly, the NSCT is performed on the aforementioned matrices to acquire multiscale and multidirection images. Thirdly, take fusion rule for low-frequency subband coefficients and directional bandpass subband coefficients to get the fused coefficients. Finally, the fused image is obtained by performing the inverse NSCT and inverse FRFT on the combined coefficients. Three modes images and three fusion rules are demonstrated in the proposed algorithm test. The simulation results show that the proposed fusion approach is better than the methods based on NSCT at the same parameters.


2021 ◽  
pp. 3228-3236
Author(s):  
Nada Jasim Habeeb

Combining multi-model images of the same scene that have different focus distances can produce clearer and sharper images with a larger depth of field. Most available image fusion algorithms are superior in results. However, they did not take into account the focus of the image. In this paper a fusion method is proposed to increase the focus of the fused image and to achieve highest quality image using the suggested focusing filter and Dual Tree-Complex Wavelet Transform. The focusing filter consist of a combination of two filters, which are Wiener filter and a sharpening filter. This filter is used before the fusion operation using Dual Tree-Complex Wavelet Transform. The common fusion rules, which are the average-fusion rule and maximum-fusion rule, were used to obtain the fused image. In the experiment, using the focus operators, the performance of the proposed fusion algorithm was compared with the existing algorithms. The results showed that the proposed method is better than these fusion methods in terms of the focus and quality. 


2019 ◽  
Vol 28 (4) ◽  
pp. 505-516
Author(s):  
Wei-bin Chen ◽  
Mingxiao Hu ◽  
Lai Zhou ◽  
Hongbin Gu ◽  
Xin Zhang

Abstract Multi-focus image fusion means fusing a completely clear image with a set of images of the same scene and under the same imaging conditions with different focus points. In order to get a clear image that contains all relevant objects in an area, the multi-focus image fusion algorithm is proposed based on wavelet transform. Firstly, the multi-focus images were decomposed by wavelet transform. Secondly, the wavelet coefficients of the approximant and detail sub-images are fused respectively based on the fusion rule. Finally, the fused image was obtained by using the inverse wavelet transform. Among them, for the low-frequency and high-frequency coefficients, we present a fusion rule based on the weighted ratios and the weighted gradient with the improved edge detection operator. The experimental results illustrate that the proposed algorithm is effective for retaining the detailed images.


2011 ◽  
Vol 1 (3) ◽  
Author(s):  
T. Sumathi ◽  
M. Hemalatha

AbstractImage fusion is the method of combining relevant information from two or more images into a single image resulting in an image that is more informative than the initial inputs. Methods for fusion include discrete wavelet transform, Laplacian pyramid based transform, curvelet based transform etc. These methods demonstrate the best performance in spatial and spectral quality of the fused image compared to other spatial methods of fusion. In particular, wavelet transform has good time-frequency characteristics. However, this characteristic cannot be extended easily to two or more dimensions with separable wavelet experiencing limited directivity when spanning a one-dimensional wavelet. This paper introduces the second generation curvelet transform and uses it to fuse images together. This method is compared against the others previously described to show that useful information can be extracted from source and fused images resulting in the production of fused images which offer clear, detailed information.


2021 ◽  
Author(s):  
Anuyogam Venkataraman

With the increasing utilization of X-ray Computed Tomography (CT) in medical diagnosis, obtaining higher quality image with lower exposure to radiation is a highly challenging task in image processing. Sparse representation based image fusion is one of the sought after fusion techniques among the current researchers. A novel image fusion algorithm based on focused vector detection is proposed in this thesis. Firstly, the initial fused vector is acquired by combining common and innovative sparse components of multi-dosage ensemble using Joint Sparse PCA fusion method utilizing an overcomplete dictionary trained using high dose images of the same region of interest from different patients. And then, the strongly focused vector is obtained by determining the pixels of low dose and medium dose vectors which have high similarity with the pixels of the initial fused vector using certain quantitative metrics. Final fused image is obtained by denoising and simultaneously integrating the strongly focused vector, initial fused vector and source image vectors in joint sparse domain thereby preserving the edges and other critical information needed for diagnosis. This thesis demonstrates the effectiveness of the proposed algorithms when experimented on different images and the qualitative and quantitative results are compared with some of the widely used image fusion methods.


Sign in / Sign up

Export Citation Format

Share Document