A NON-ORTHOGONAL CAYLEY–DICKSON DOUBLING

2006 ◽  
Vol 05 (02) ◽  
pp. 193-199 ◽  
Author(s):  
S. PUMPLÜN

Let R be an integral domain in which 2 is not an invertible element, with quotient field K of characteristic not 2. A construction method for octonion algebras over Ris presented for which the resulting algebra does not necessarily contain a composition subalgebra.

2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


1974 ◽  
Vol 26 (3) ◽  
pp. 532-542 ◽  
Author(s):  
Joe L. Mott

If D is an integral domain with quotient field K, the group of divisibility G(D) of D is the partially ordered group of non-zero principal fractional ideals with aD ≦ bD if and only if aD contains bD. If K* denotes the multiplicative group of K and U(D) the group of units of D, then G(D) is order isomorphic to K*/U(D), where aU(D) ≦ bU(D) if and only if b/a ∊ D.


Author(s):  
Robert Gilmer

AbstractSuppose D is an integral domain with quotient field K and that L is an extension field of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by Gilmer and Heinzer in 1965.


1982 ◽  
Vol 34 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Leslie G. Roberts

Let A be the co-ordinate ring of a reduced curve over a field k. This means that A is an algebra of finite type over k, A has no nilpotent elements, and that if P is a minimal prime ideal of A, then A/P is an integral domain of Krull dimension one. Let M be a maximal ideal of A. Then G(A) (the graded ring of A relative to M) is defined to be . We get the same graded ring if we first localize at M, and then form the graded ring of AM relative to the maximal ideal MAM. That isLet Ā be the integral closure of A. If P1, P2, …, Ps are the minimal primes of A thenwhere A/Pi is a domain and is the integral closure of A/Pi in its quotient field.


1997 ◽  
Vol 40 (1) ◽  
pp. 19-30 ◽  
Author(s):  
A. W. Mason

Let R be a commutative integral domain and let S be its quotient field. The group GL2(R) acts on Ŝ = S ∪ {∞} as a group of linear fractional transformations in the usual way. Let F2(R, z) be the stabilizer of z ∈ Ŝ in GL2(R) and let F2(R) be the subgroup generated by all F2(R, z). Among the subgroups contained in F2(R) are U2(R), the subgroup generated by all unipotent matrices, and NE2(R), the normal subgroup generated by all elementary matrices.We prove a structure theorem for F2(R, z), when R is a Krull domain. A more precise version holds when R is a Dedekind domain. For a large class of arithmetic Dedekind domains it is known that the groups NE2(R),U2(R) and SL2(R) coincide. An example is given for which all these subgroups are distinct.


1961 ◽  
Vol 13 ◽  
pp. 569-586 ◽  
Author(s):  
Eben Matlis

Throughout this discussion R will be an integral domain with quotient field Q and K = Q/R ≠ 0. If A is an R-module, then A is said to be torsion-free (resp. divisible), if for every r ≠ 0 ∈ R the endomorphism of A defined by x → rx, x ∈ A, is a monomorphism (resp. epimorphism). If A is torsion-free, the rank of A is defined to be the dimension over Q of the vector space A ⊗R Q; (we note that a torsion-free R-module of rank one is the same thing as a non-zero R-submodule of Q). A will be said to be indecomposable, if A has no proper, non-zero, direct summands. We shall say that A has D.C.C., if A satisfies the descending chain condition for submodules. By dim R we shall mean the maximal length of a chain of prime ideals in R.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250112 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

For a pair of rings S ⊆ T and a nonnegative integer n, an element t ∈ T\S is said to be within n steps of S if there is a saturated chain of rings S = S0 ⊊ S1 ⊊ ⋯ ⊊ Sm = S[t] with length m ≤ n. An integral domain R is said to be n-valuative (respectively, finitely valuative) if for each nonzero element u in its quotient field, at least one of u and u-1 is within n (respectively, finitely many) steps of R. The integral closure of a finitely valuative domain is a Prüfer domain. Moreover, an n-valuative domain has at most 2n + 1 maximal ideals; and an n-valuative domain with 2n + 1 maximal ideals must be a Prüfer domain.


1981 ◽  
Vol 22 (2) ◽  
pp. 167-172 ◽  
Author(s):  
David F. Anderson

Let R be an integral domain with quotient field K. A fractional ideal I of R is a ∨-ideal if I is the intersection of all the principal fractional ideals of R which contain I. If I is an integral ∨-ideal, at first one is tempted to think that I is actually just the intersection of the principal integral ideals which contain I.However, this is not true. For example, if R is a Dedekind domain, then all integral ideals are ∨-ideals. Thus a maximal ideal of R is an intersection of principal integral ideals if and only if it is actually principal. Hence, if R is a Dedekind domain, each integral ∨-ideal is an intersection of principal integral ideals precisely when R is a PID.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


1999 ◽  
Vol 59 (3) ◽  
pp. 467-471 ◽  
Author(s):  
Ryûki Matsuda

Let D be an integral domain with quotient field K. If α2 − α ∈ D and α3 − α2 ∈ D imply α ∈ D for all elements α of K, then D is called a u-closed domain. A submonoid S of a torsion-free Abelian group is called a grading monoid. We consider the semigroup ring D[S] of a grading monoid S over a domain D. The main aim of this note is to determine conditions for D[S] to be u-closed. We shall show the following Theorem: D[S] is u-closed if and only if D is u-closed.


Sign in / Sign up

Export Citation Format

Share Document