UNIPOTENT ELEMENTS IN REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE

2012 ◽  
Vol 11 (02) ◽  
pp. 1250038 ◽  
Author(s):  
L. DI MARTINO ◽  
A. E. ZALESSKI

Let G be a finite quasi-simple group of Lie type of defining characteristic r > 2. Let H = 〈h, G〉 be a group with normal subgroup G, where h is a non-central r-element of H. Let ϕ be an irreducible representation of H non-trivial on G over an algebraically closed field of characteristic ℓ ≠ r. We show that ϕ(h) has at least two distinct eigenvalues of multiplicity greater than 1, unless G is a central quotient of one of the following groups: SL(2, r), SL(2, 9) or Sp(4, 3), and H = G⋅Z(H).

2019 ◽  
Vol 7 ◽  
Author(s):  
TIMOTHY C. BURNESS ◽  
DONNA M. TESTERMAN

Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.


1962 ◽  
Vol 14 ◽  
pp. 293-303 ◽  
Author(s):  
B. Noonan

This paper considers the properties of the representation of a Lie algebra when restricted to an ideal, the subduced* representation of the ideal. This point of view leads to new forms for irreducible representations of Lie algebras, once the concept of matrices of invariance is developed. This concept permits us to show that irreducible representations of a Lie algebra, over an algebraically closed field, can be expressed as a Lie-Kronecker product whose factors are associated with the representation subduced on an ideal. Conversely, if one has such factors, it is shown that they can be put together to give an irreducible representation of the Lie algebra. A valuable guide to this work was supplied by a paper of Clifford (1).


Author(s):  
Serge Cantat ◽  
Vincent Guirardel ◽  
Anne Lonjou

Abstract Consider an algebraically closed field ${\textbf{k}}$, and let $\textsf{Cr}_2({\textbf{k}})$ be the Cremona group of all birational transformations of the projective plane over ${\textbf{k}}$. We characterize infinite order elements $g\in \textsf{Cr}_2({\textbf{k}})$ having a power $g^n$, $n\neq 0$, generating a proper normal subgroup of $\textsf{Cr}_2({\textbf{k}})$.


2011 ◽  
Vol 90 (3) ◽  
pp. 403-430 ◽  
Author(s):  
YU-FENG YAO ◽  
BIN SHU

AbstractLetL=H(2r;n) be a graded Lie algebra of Hamiltonian type in the Cartan type series over an algebraically closed field of characteristicp>2. In the generalized restricted Lie algebra setup, any irreducible representation ofLcorresponds uniquely to a (generalized)p-characterχ. When the height ofχis no more than min {pni−pni−1∣i=1,2,…,2r}−2, the corresponding irreducible representations are proved to be induced from irreducible representations of the distinguished maximal subalgebraL0with the aid of an analogy of Skryabin’s category ℭ for the generalized Jacobson–Witt algebras and modulo finitely many exceptional cases. Since the exceptional simple modules have been classified, we can then give a full description of the irreducible representations withp-characters of height below this number.


Sign in / Sign up

Export Citation Format

Share Document