scholarly journals RINGS WHOSE ANNIHILATING-IDEAL GRAPHS HAVE POSITIVE GENUS

2012 ◽  
Vol 11 (03) ◽  
pp. 1250049 ◽  
Author(s):  
F. ALINIAEIFARD ◽  
M. BEHBOODI

Let R be a commutative ring and 𝔸(R) be the set of ideals with nonzero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). We investigate commutative rings R whose annihilating-ideal graphs have positive genus γ(𝔸𝔾(R)). It is shown that if R is an Artinian ring such that γ(𝔸𝔾(R)) < ∞, then either R has only finitely many ideals or (R, 𝔪) is a Gorenstein ring with maximal ideal 𝔪 and v.dimR/𝔪𝔪/𝔪2= 2. Also, for any two integers g ≥ 0 and q > 0, there are only finitely many isomorphism classes of Artinian rings R satisfying the conditions: (i) γ(𝔸𝔾(R)) = g and (ii) |R/𝔪| ≤ q for every maximal ideal 𝔪 of R. Also, it is shown that if R is a non-domain Noetherian local ring such that γ(𝔸𝔾(R)) < ∞, then either R is a Gorenstein ring or R is an Artinian ring with only finitely many ideals.

2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2014 ◽  
Vol 06 (03) ◽  
pp. 1450037
Author(s):  
R. Kala ◽  
S. Kavitha

Let R be a commutative ring with identity. The nilpotent graph of R, denoted by ΓN(R), is a graph with vertex set [Formula: see text], and two vertices x and y are adjacent if and only if xy is nilpotent, where [Formula: see text] is nilpotent, for some y ∈ R*}. In this paper, we determine all isomorphism classes of finite commutative rings with identity whose ΓN(R) has genus one.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850193 ◽  
Author(s):  
T. Asir

Given a commutative ring [Formula: see text] with identity [Formula: see text], its Jacobson graph [Formula: see text] is defined to be the graph in which the vertex set is [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Here [Formula: see text] denotes the Jacobson radical of [Formula: see text] and [Formula: see text] is the set of unit elements in [Formula: see text]. This paper investigates the genus properties of Jacobson graph. In particular, we determine all isomorphism classes of commutative rings whose Jacobson graph has genus two.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 817-822 ◽  
Author(s):  
S. Akbari ◽  
E. Estaji ◽  
M.R. Khorsandi

Let R be a ring with non-zero identity. The unit graph G(R) of R is a graph with elements of R as its vertices and two distinct vertices a and b are adjacent if and only if a + b is a unit element of R. It was proved that if R is a commutative ring and 𝔪 is a maximal ideal of R such that |R/𝔪| = 2, then G(R) is a complete bipartite graph if and only if (R, 𝔪) is a local ring. In this paper we generalize this result by showing that if R is a ring (not necessarily commutative), then G(R) is a complete r-partite graph if and only if (R, 𝔪) is a local ring and r = |R/𝔪| = 2n for some n ∈ ℕ or R is a finite field. Among other results we show that if R is a left Artinian ring, 2 ∈ U(R) and the clique number of G(R) is finite, then R is a finite ring.


2020 ◽  
pp. 2070-2076
Author(s):  
F. H. Abdulqadr

In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950010
Author(s):  
K. Selvakumar ◽  
V. C. Amritha

Let [Formula: see text] be a commutative ring with identity and [Formula: see text], a fixed integer. Let [Formula: see text] be the set of all [Formula: see text]-maximal elements in [Formula: see text] Associate a [Formula: see text]-maximal hypergraph [Formula: see text] to [Formula: see text] with vertex set [Formula: see text] and for distinct elements [Formula: see text] in [Formula: see text], the set [Formula: see text] is an edge of [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for all [Formula: see text]. In this paper, we determine all isomorphism classes of finite commutative non-local rings with identity whose [Formula: see text]-maximal hypergraph has genus one. Finally, we classify all finite commutative non-local rings [Formula: see text] for which [Formula: see text] is projective.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850125
Author(s):  
T. Tamizh Chelvam ◽  
K. Selvakumar ◽  
V. Ramanathan

Let [Formula: see text] be a commutative ring, [Formula: see text] the set of all ideals of [Formula: see text] and [Formula: see text], a subset of [Formula: see text]. The Cayley sum graph of ideals of [Formula: see text], denoted by Cay[Formula: see text], is a simple undirected graph with vertex set is the set [Formula: see text] and, for any two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text], for some [Formula: see text] in [Formula: see text]. In this paper, we study connectedness, Eulerian and Hamiltonian properties of Cay[Formula: see text]. Moreover, we characterize all commutative Artinian rings [Formula: see text] whose Cay[Formula: see text] is toroidal.


2021 ◽  
Vol 45 (01) ◽  
pp. 63-73
Author(s):  
S. M. SAADAT MIRGHADIM ◽  
M. J. NIKMEHR ◽  
R. NIKANDISH

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by AR, is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent whenever Ann(I) ∩ Ann(J) = (0). In this paper, we characterize all Artinian rings for which both of the graphs AR and AR (the complement of AR), are chordal. Moreover, all Artinian rings whose AR (and thus AR) is perfect are characterized.


Author(s):  
V. Ramanathan

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] the set of all nontrivial proper ideals of [Formula: see text]. The intersection graph of ideals of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as the set [Formula: see text], and, for any two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study some connections between commutative ring theory and graph theory by investigating topological properties of intersection graph of ideals. In particular, it is shown that for any nonlocal Artinian ring [Formula: see text], [Formula: see text] is a projective graph if and only if [Formula: see text] where [Formula: see text] is a local principal ideal ring with maximal ideal [Formula: see text] of nilpotency three and [Formula: see text] is a field. Furthermore, it is shown that for an Artinian ring [Formula: see text] [Formula: see text] if and only if [Formula: see text] where each [Formula: see text] is a local principal ideal ring with maximal ideal [Formula: see text] such that [Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document