ON THE VANISHING IDEAL OF AN ALGEBRAIC TORIC SET AND ITS PARAMETRIZED LINEAR CODES

2012 ◽  
Vol 11 (04) ◽  
pp. 1250072 ◽  
Author(s):  
ELISEO SARMIENTO ◽  
MARIA VAZ PINTO ◽  
RAFAEL H. VILLARREAL

Let K be a finite field and let X be a subset of a projective space, over the field K, which is parametrized by monomials arising from the edges of a clutter. We show some estimates for the degree-complexity, with respect to the revlex order, of the vanishing ideal I(X) of X. If the clutter is uniform, we classify the complete intersection property of I(X) using linear algebra. We show an upper bound for the minimum distance of certain parametrized linear codes along with certain estimates for the algebraic invariants of I(X).

2015 ◽  
Vol 23 (2) ◽  
pp. 223-240
Author(s):  
Manuel González Sarabia ◽  
Carlos Rentería Márquez ◽  
Eliseo Sarmiento Rosales

Abstract In this paper we estimate the main parameters of some evaluation codes which are known as projective parameterized codes. We find the length of these codes and we give a formula for the dimension in terms of the Hilbert function associated to two ideals, one of them being the vanishing ideal of the projective torus. Also we find an upper bound for the minimum distance and, in some cases, we give some lower bounds for the regularity index and the minimum distance. These lower bounds work in several cases, particularly for any projective parameterized code associated to the incidence matrix of uniform clutters and then they work in the case of graphs.


2017 ◽  
Vol 15 (1) ◽  
pp. 1099-1107 ◽  
Author(s):  
María Isabel García-Planas ◽  
Maria Dolors Magret ◽  
Laurence Emilie Um

Abstract It is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship is presented between monomial codes over a finite field 𝔽 and hyperinvariant subspaces of 𝔽n under an appropriate linear transformation. Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes, generalizing known results on cyclic codes.


2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


2011 ◽  
Vol 57 (9) ◽  
pp. 6089-6093 ◽  
Author(s):  
Iliya Georgiev Bouyukliev ◽  
Erik Jacobsson

10.37236/9008 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Mustafa Gezek ◽  
Rudi Mathon ◽  
Vladimir D. Tonchev

In this paper we consider binary linear codes spanned by incidence matrices of Steiner 2-designs associated with maximal arcs in projective planes of even order, and their dual codes. Upper and lower bounds on the 2-rank of the incidence matrices are derived. A lower bound on the minimum distance of the dual codes is proved, and it is shown that the bound is achieved if and only if the related maximal arc contains a hyperoval of the plane. The  binary linear codes of length 52 spanned by the incidence matrices of 2-$(52,4,1)$ designs associated with previously known and some newly found maximal arcs of degree 4 in projective planes of order 16 are analyzed and classified up to equivalence. The classification shows that some designs associated with maximal arcs in nonisomorphic planes generate equivalent codes. This phenomenon establishes new links between several of the known planes. A conjecture concerning the codes of maximal arcs in $PG(2,2^m)$ is formulated.


Sign in / Sign up

Export Citation Format

Share Document