Commutative rings with infinitely many maximal subrings

2014 ◽  
Vol 13 (07) ◽  
pp. 1450037 ◽  
Author(s):  
Alborz Azarang ◽  
Greg Oman

It is shown that RgMax (R) is infinite for certain commutative rings, where RgMax (R) denotes the set of all maximal subrings of a ring R. It is observed that whenever R is a ring and D is a UFD subring of R, then | RgMax (R)| ≥ | Irr (D) ∩ U(R)|, where Irr (D) is the set of all non-associate irreducible elements of D and U(R) is the set of all units of R. It is shown that every ring R is either Hilbert or | RgMax (R)| ≥ ℵ0. It is proved that if R is a zero-dimensional (or semilocal) ring with | RgMax (R)| < ℵ0, then R has nonzero characteristic, say n, and R is integral over ℤn. In particular, it is shown that if R is an uncountable artinian ring, then | RgMax (R)| ≥ |R|. It is observed that if R is a noetherian ring with |R| > 2ℵ0, then | RgMax (R)| ≥ 2ℵ0. We determine exactly when a direct product of rings has only finitely many maximal subrings. In particular, it is proved that if a semisimple ring R has only finitely many maximal subrings, then every descending chain ⋯ ⊂ R2 ⊂ R1 ⊂ R0 = R where each Ri is a maximal subring of Ri-1, i ≥ 1, is finite and the last terms of all these chains (possibly with different lengths) are isomorphic to a fixed ring, say S, which is unique (up to isomorphism) with respect to the property that R is finitely generated as an S-module.

Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

AbstractA module M is called $$\mathfrak {s}$$ s -coseparable if for every nonzero submodule U of M such that M/U is finitely generated, there exists a nonzero direct summand V of M such that $$V \subseteq U$$ V ⊆ U and M/V is finitely generated. It is shown that every non-finitely generated free module is $$\mathfrak {s}$$ s -coseparable but a finitely generated free module is not, in general, $$\mathfrak {s}$$ s -coseparable. We prove that the class of $$\mathfrak {s}$$ s -coseparable modules over a right noetherian ring is closed under finite direct sums. We show that the class of commutative rings R for which every cyclic R-module is $$\mathfrak {s}$$ s -coseparable is exactly that of von Neumann regular rings. Some examples of modules M for which every direct summand of M is $$\mathfrak {s}$$ s -coseparable are provided.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


Author(s):  
HERVÉ PERDRY ◽  
PETER SCHUSTER

We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert's programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


2018 ◽  
Vol 61 (1) ◽  
pp. 130-141
Author(s):  
Tamer Košan ◽  
Serap Sahinkaya ◽  
Yiqiang Zhou

AbstractLet R be a ring. A map f: R → R is additive if f(a + b) = f(a) + f(b) for all elements a and b of R. Here, a map f: R → R is called unit-additive if f(u + v) = f(u) + f(v) for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of (F) is additive for all n ≥ z, this paper is about the question of when every unit-additivemap of a ring is additive. It is proved that every unit-additivemap of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to or R/J(R) ≅ with 2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of (R) is additive for all n ≥ 2. These results are further extended to rings R such that R/J(R) is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if f(uv) = f(u)f(v) for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.


2018 ◽  
Vol 55 (3) ◽  
pp. 345-352
Author(s):  
Tran Nguyen An

Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0R ⋉ M.


2011 ◽  
Vol 10 (03) ◽  
pp. 475-489 ◽  
Author(s):  
PINAR AYDOĞDU ◽  
A. ÇIĞDEM ÖZCAN ◽  
PATRICK F. SMITH

Let R be a ring. Modules satisfying ascending or descending chain conditions (respectively, acc and dcc) on non-summand submodules belongs to some particular classes [Formula: see text], such as the class of all R-modules, finitely generated, finite-dimensional and cyclic modules, are considered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right Noetherian ring R, a right R-module M satisfies acc on finitely generated non-summands if and only if M satisfies acc on non-summands; a right R-module M satisfies dcc on finitely generated non-summands if and only if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a semiregular ring such that the Jacobson radical J is left t-nilpotent.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2016 ◽  
Vol 59 (2) ◽  
pp. 271-278
Author(s):  
Fatemeh Dehghani-Zadeh

AbstractLet be a graded Noetherian ring with local base ring (R0 ,m0) and let . Let M and N be finitely generated graded R-modules and let a = a0 + R+ an ideal of R. We show that and are Artinian for some i s and j s with a specified property, where bo is an ideal of R0 such that a0 + b0 is an m0-primary ideal.


Sign in / Sign up

Export Citation Format

Share Document