On splitting of the normalizer of a maximal torus in orthogonal groups

2016 ◽  
Vol 16 (09) ◽  
pp. 1750174 ◽  
Author(s):  
Alexey Galt

We answer the question of splitting of the normalizer of a maximal torus in orthogonal groups of type [Formula: see text] and [Formula: see text] over finite fields and algebraically closed fields of positive characteristic.

2002 ◽  
Vol 67 (3) ◽  
pp. 957-996 ◽  
Author(s):  
Zoé Chatzidakis

The study of pseudo-algebraically closed fields (henceforth called PAC) started with the work of J. Ax on finite and pseudo-finite fields [1]. He showed that the infinite models of the theory of finite fields are exactly the perfect PAC fields with absolute Galois group isomorphic to , and gave elementary invariants for their first order theory, thereby proving the decidability of the theory of finite fields. Ax's results were then extended to a larger class of PAC fields by M. Jarden and U. Kiehne [21], and Jarden [19]. The final word on theories of PAC fields was given by G. Cherlin, L. van den Dries and A. Macintyre [10], see also results by Ju. Ershov [13], [14]. Let K be a PAC field. Then the elementary theory of K is entirely determined by the following data:• The isomorphism type of the field of absolute numbers of K (the subfield of K of elements algebraic over the prime field).• The degree of imperfection of K.• The first-order theory, in a suitable ω-sorted language, of the inverse system of Galois groups al(L/K) where L runs over all finite Galois extensions of K.They also showed that the theory of PAC fields is undecidable, by showing that any graph can be encoded in the absolute Galois group of some PAC field. It turns out that the absolute Galois group controls much of the behaviour of the PAC fields. I will give below some examples illustrating this phenomenon.


1988 ◽  
Vol 53 (1) ◽  
pp. 188-199
Author(s):  
Gary A. Martin

Let K be an algebraically closed field and let L be its canonical language; that is, L consists of all relations on K which are definable from addition, multiplication, and parameters from K. Two sublanguages L1 and L2 of L are definably equivalent if each relation in L1 can be defined by an L2-formula with parameters in K, and vice versa. The equivalence classes of sublanguages of L form a quotient lattice of the power set of L about which very little is known. We will not distinguish between a sublanguage and its equivalence class.Let Lm denote the language of multiplication alone, and let La denote the language of addition alone. Let f ∈ K [X, Y] and consider the algebraic function defined by f (x, y) = 0 for x, y ∈ K. Let Lf denote the language consisting of the relation defined by f. The possibilities for Lm ∨ Lf are examined in §2, and the possibilities for La ∨ Lf are examined in §3. In fact the only comprehensive results known are under the additional hypothesis that f actually defines a rational function (i.e., when f is linear in one of the variables), and in positive characteristic, only expansions of addition by polynomials (i.e., when f is linear and monic in one of the variables) are understood. It is hoped that these hypotheses will turn out to be unnecessary, so that reasonable generalizations of the theorems described below to algebraic functions will be true. The conjecture is that L covers Lm and that the only languages between La and L are expansions of La by scalar multiplications.


Sign in / Sign up

Export Citation Format

Share Document