Several classes of permutation trinomials from Niho exponents over finite fields of characteristic 3

2019 ◽  
Vol 18 (04) ◽  
pp. 1950069
Author(s):  
Qian Liu ◽  
Yujuan Sun

Permutation polynomials have important applications in cryptography, coding theory, combinatorial designs, and other areas of mathematics and engineering. Finding new classes of permutation polynomials is therefore an interesting subject of study. Permutation trinomials attract people’s interest due to their simple algebraic forms and additional extraordinary properties. In this paper, based on a seventh-degree and a fifth-degree Dickson polynomial over the finite field [Formula: see text], two conjectures on permutation trinomials over [Formula: see text] presented recently by Li–Qu–Li–Fu are partially settled, where [Formula: see text] is a positive integer.

Author(s):  
Wan Daqing

A conjecture of Carlitz on permutation polynomials is as follow: Given an even positive integer n, there is a constant Cn, such that if Fq is a finite field of odd order q with q > Cn, then there are no permutation polynomials of degree n over Fq. The conjecture is a well-known problem in this area. It is easily proved if n is a power of 2. The only other cases in which solutions have been published are n = 6 (Dickson [5]) and n = 10 (Hayes [7]); see Lidl [11], Lausch and Nobauer [9], and Lidl and Niederreiter [10] for remarks on this problem. In this paper, we prove that the Carlitz conjecture is true if n = 12 or n = 14, and give an equivalent version of the conjecture in terms of exceptional polynomials.


2021 ◽  
Vol 40 ◽  
pp. 1-19
Author(s):  
A. Boulbot ◽  
Abdelhakim Chillali ◽  
A Mouhib

An elliptic curve over a ring $\mathcal{R}$ is a curve in the projective plane $\mathbb{P}^{2}(\mathcal{R})$ given by a specific equation of the form $f(X, Y, Z)=0$ named the Weierstrass equation, where $f(X, Y, Z)=Y^2Z+a_1XYZ+a_3YZ^2-X^3-a_2X^2Z-a_4XZ^2-a_6Z^3$ with coefficients $a_1, a_2, a_3, a_4, a_6$ in $\mathcal{R}$ and with an invertible discriminant in the ring $\mathcal{R}.$ %(see \cite[Chapter III, Section 1]{sil1}).  In this paper, we consider an elliptic curve over a finite ring of characteristic 3 given by the Weierstrass equation: $Y^2Z=X^3+aX^2Z+bZ^3$ where $a$ and $b$ are in the quotient ring $\mathcal{R}:=\mathbb{F}_{3^d}[X]/(X^2-X),$ where $d$ is a positive integer and $\mathbb{F}_{3^d}[X]$ is the polynomial ring with coefficients in the finite field $\mathbb{F}_{3^d}$ and such that $-a^3b$ is invertible in $\mathcal{R}$.


1987 ◽  
Vol 30 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Gary L. Mullen ◽  
Harald Niederreiter

AbstractDickson polynomials over finite fields are familiar examples of permutation polynomials, i.e. of polynomials for which the corresponding polynomial mapping is a permutation of the finite field. We prove that a Dickson polynomial can be a complete mapping polynomial only in some special cases. Complete mapping polynomials are of interest in combinatorics and are defined as polynomials f(x) over a finite field for which both f(x) and f(x) + x are permutation polynomials. Our result also verifies a special case of a conjecture of Chowla and Zassenhaus on permutation polynomials.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Liu

Let F q denote the finite field with q elements. Permutation polynomials over finite fields have important applications in many areas of science and engineering such as coding theory, cryptography, and combinatorial design. The study of permutation polynomials has a long history, and many results are obtained in recent years. In this paper, we obtain some further results about the permutation properties of permutation polynomials. Some new classes of permutation polynomials are constructed, and the necessities of some permutation polynomials are studied.


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


Author(s):  
Najm A.M. Al-Seraji ◽  
Asraa A. Monshed

In this research we are interested in finding all the different cubic curves over a finite projective plane of order twenty-three, learning which of them is complete or not, constructing the stabilizer groups of the cubics in, studying the properties of these groups, and, finally, introducing the relation between the subject of coding theory and the projective plane of order twenty three.


2016 ◽  
Vol 12 (06) ◽  
pp. 1519-1528
Author(s):  
Kwang Yon Kim ◽  
Ryul Kim ◽  
Jin Song Kim

In order to extend the results of [Formula: see text] in [P. Das, The number of permutation polynomials of a given degree over a finite field, Finite Fields Appl. 8(4) (2002) 478–490], where [Formula: see text] is a prime, to arbitrary finite fields [Formula: see text], we find a formula for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], which has [Formula: see text] elements, in terms of the permanent of a matrix. We write down an expression for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], using the permanent of a matrix whose entries are [Formula: see text]th roots of unity and using this we obtain a nontrivial bound for the number. Finally, we provide a formula for the number of permutation polynomials of degree [Formula: see text] less than [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document