scholarly journals Elliptic curve over a finite ring generated by 1 and an idempotent element $e$ with coefficients in the finite field $\mathbb{F}_{3^d}$

2021 ◽  
Vol 40 ◽  
pp. 1-19
Author(s):  
A. Boulbot ◽  
Abdelhakim Chillali ◽  
A Mouhib

An elliptic curve over a ring $\mathcal{R}$ is a curve in the projective plane $\mathbb{P}^{2}(\mathcal{R})$ given by a specific equation of the form $f(X, Y, Z)=0$ named the Weierstrass equation, where $f(X, Y, Z)=Y^2Z+a_1XYZ+a_3YZ^2-X^3-a_2X^2Z-a_4XZ^2-a_6Z^3$ with coefficients $a_1, a_2, a_3, a_4, a_6$ in $\mathcal{R}$ and with an invertible discriminant in the ring $\mathcal{R}.$ %(see \cite[Chapter III, Section 1]{sil1}).  In this paper, we consider an elliptic curve over a finite ring of characteristic 3 given by the Weierstrass equation: $Y^2Z=X^3+aX^2Z+bZ^3$ where $a$ and $b$ are in the quotient ring $\mathcal{R}:=\mathbb{F}_{3^d}[X]/(X^2-X),$ where $d$ is a positive integer and $\mathbb{F}_{3^d}[X]$ is the polynomial ring with coefficients in the finite field $\mathbb{F}_{3^d}$ and such that $-a^3b$ is invertible in $\mathcal{R}$.

2019 ◽  
Vol 18 (04) ◽  
pp. 1950069
Author(s):  
Qian Liu ◽  
Yujuan Sun

Permutation polynomials have important applications in cryptography, coding theory, combinatorial designs, and other areas of mathematics and engineering. Finding new classes of permutation polynomials is therefore an interesting subject of study. Permutation trinomials attract people’s interest due to their simple algebraic forms and additional extraordinary properties. In this paper, based on a seventh-degree and a fifth-degree Dickson polynomial over the finite field [Formula: see text], two conjectures on permutation trinomials over [Formula: see text] presented recently by Li–Qu–Li–Fu are partially settled, where [Formula: see text] is a positive integer.


2021 ◽  
Vol 91 (333) ◽  
pp. 401-449
Author(s):  
Markus Kirschmer ◽  
Fabien Narbonne ◽  
Christophe Ritzenthaler ◽  
Damien Robert

Let E E be an ordinary elliptic curve over a finite field and g g be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of E g E^g . The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E 3 E^3 and of the Igusa modular form in dimension 4 4 . We illustrate our algorithms with examples of curves with many rational points over finite fields.


2019 ◽  
Vol 38 (3) ◽  
pp. 193-201 ◽  
Author(s):  
A. Boulbot ◽  
Abdelhakim Chillali ◽  
A. Mouhib

Let Fq be a finite field of q elements, where q is a power of a prime number p greater than or equal to 5. In this paper, we study the elliptic curve denoted Ea,b(Fq[e]) over the ring Fq[e], where e2 = e and (a,b) ∈ (Fq[e])2. In a first time, we study the arithmetic of this ring. In addition, using the Weierstrass equation, we define the elliptic curve Ea,b(Fq[e]) and we will show that Eπ0(a),π0(b)(Fq) and Eπ1(a),π1(b)(Fq) are two elliptic curves over the field Fq, where π0 and π1 are respectively the canonical projection and the sum projection of coordinates of X ∈Fq[e]. Precisely, we give a bijection between the sets Ea,b(Fq[e]) and Eπ0(a),π0(b)(Fq)×Eπ1(a),π1(b)(Fq).


2019 ◽  
Vol 15 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Haoli Wang ◽  
Jun Hao ◽  
Lizhen Zhang

Let [Formula: see text] be a commutative semigroup endowed with a binary associative operation [Formula: see text]. An element [Formula: see text] of [Formula: see text] is said to be idempotent if [Formula: see text]. The Erdős–Burgess constant of [Formula: see text] is defined as the smallest [Formula: see text] such that any sequence [Formula: see text] of terms from [Formula: see text] and of length [Formula: see text] contains a nonempty subsequence, the sum of whose terms is idempotent. Let [Formula: see text] be a prime power, and let [Formula: see text] be the polynomial ring over the finite field [Formula: see text]. Let [Formula: see text] be a quotient ring of [Formula: see text] modulo any ideal [Formula: see text]. We gave a sharp lower bound of the Erdős–Burgess constant of the multiplicative semigroup of the ring [Formula: see text], in particular, we determined the Erdős–Burgess constant in the case when [Formula: see text] is the power of a prime ideal or a product of pairwise distinct prime ideals in [Formula: see text].


Author(s):  
Abdelhakim Chillali ◽  
Lhoussain El Fadil

The goal of this chapter is to study some arithmetic proprieties of an elliptic curve defined by a Weierstrass equation on the local ring Rn=FqX/Xn, where n≥1 is an integer. It consists of, an introduction, four sections, and a conclusion. In the first section, we review some fundamental arithmetic proprieties of finite local rings Rn, which will be used in the remainder of the chapter. The second section is devoted to a study the above mentioned elliptic curve on these finite local rings for arbitrary characteristics. A restriction to some specific characteristic cases will then be considered in the third section. Using these studies, we give in the fourth section some cryptography applications, and we give in the conclusion some current research perspectives concerning the use of this kind of curves in cryptography. We can see in the conclusion of research in perspectives on these types of curves.


2016 ◽  
Vol 13 (01) ◽  
pp. 133-152
Author(s):  
Igor E. Shparlinski ◽  
Andrew V. Sutherland

Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime [Formula: see text] and positive integer [Formula: see text], outputs an elliptic curve [Formula: see text] over the finite field [Formula: see text] for which the cardinality of [Formula: see text] is divisible by [Formula: see text]. The running time of the algorithm is [Formula: see text], and this leads to more efficient constructions of rational functions over [Formula: see text] whose image is small relative to [Formula: see text]. We also give an unconditional version of the algorithm that works for almost all primes [Formula: see text], and give a probabilistic algorithm with subexponential time complexity.


2016 ◽  
Vol 12 (03) ◽  
pp. 663-669 ◽  
Author(s):  
Haoli Wang ◽  
Lizhen Zhang ◽  
Qinghong Wang ◽  
Yongke Qu

Let [Formula: see text] be a finite commutative semigroup. The Davenport constant of [Formula: see text], denoted [Formula: see text], is defined to be the least positive integer [Formula: see text] such that every sequence [Formula: see text] of elements in [Formula: see text] of length at least [Formula: see text] contains a proper subsequence [Formula: see text] with the sum of all terms from [Formula: see text] equaling the sum of all terms from [Formula: see text]. Let [Formula: see text] be a polynomial ring in one variable over the prime field [Formula: see text], and let [Formula: see text]. In this paper, we made a study of the Davenport constant of the multiplicative semigroup of the quotient ring [Formula: see text] and proved that, for any prime [Formula: see text] and any polynomial [Formula: see text] which factors into a product of pairwise non-associate irreducible polynomials, [Formula: see text] where [Formula: see text] denotes the multiplicative semigroup of the quotient ring [Formula: see text] and [Formula: see text] denotes the group of units of the semigroup [Formula: see text].


1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


Sign in / Sign up

Export Citation Format

Share Document