Biprojectivity and biflatness of amalgamated duplication of Banach algebras

2019 ◽  
Vol 19 (07) ◽  
pp. 2050132
Author(s):  
Ali Ebadian ◽  
Ali Jabbari

Let [Formula: see text] and [Formula: see text] be two Banach algebras such that [Formula: see text] is a Banach [Formula: see text]-bimodule with the left and right compatible action of [Formula: see text] on [Formula: see text]. Let [Formula: see text] be a strongly splitting Banach algebra extension of [Formula: see text] by [Formula: see text]. We show that (super) amenability of [Formula: see text] implies (super) module amenability of [Formula: see text] and (super) amenability [Formula: see text]. We investigate biprojectivity and biflatness of [Formula: see text] in the some especial cases. We also give some results related to module biprojectivity and module biflatness of [Formula: see text], when [Formula: see text] is biprojective or biflat.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850169 ◽  
Author(s):  
Hossein Javanshiri ◽  
Mehdi Nemati

Let [Formula: see text] and [Formula: see text] be Banach algebras such that [Formula: see text] is a Banach [Formula: see text]-bimodule with compatible actions. We define the product [Formula: see text], which is a strongly splitting Banach algebra extension of [Formula: see text] by [Formula: see text]. After characterization of the multiplier algebra, topological center, (maximal) ideals and spectrum of [Formula: see text], we restrict our investigation to the study of semisimplicity, regularity, Arens regularity of [Formula: see text] in relation to that of the algebras [Formula: see text], [Formula: see text] and the action of [Formula: see text] on [Formula: see text]. We also compute the first cohomology group [Formula: see text] for all [Formula: see text] as well as the first-order cyclic cohomology group [Formula: see text], where [Formula: see text] is the [Formula: see text]th dual space of [Formula: see text] when [Formula: see text] and [Formula: see text] itself when [Formula: see text]. These results are not only of interest in their own right, but also they pave the way for obtaining some new results for Lau products and module extensions of Banach algebras as well as triangular Banach algebra. Finally, special attention is devoted to the cyclic and [Formula: see text]-weak amenability of [Formula: see text]. In this context, several open questions arise.



2018 ◽  
Vol 17 (12) ◽  
pp. 1850225
Author(s):  
Hülya İnceboz ◽  
Berna Arslan

The notion of module amenability for a class of Banach algebras, which could be considered as a generalization of Johnson’s amenability, was introduced by Amini in [Module amenability for semigroup algebras, Semigroup Forum 69 (2004) 243–254]. The weak module amenability of the triangular Banach algebra [Formula: see text], where [Formula: see text] and [Formula: see text] are Banach algebras (with [Formula: see text]-module structure) and [Formula: see text] is a Banach [Formula: see text]-module, is studied by Pourabbas and Nasrabadi in [Weak module amenability of triangular Banach algebras, Math. Slovaca 61(6) (2011) 949–958], and they showed that the weak module amenability of [Formula: see text] triangular Banach algebra [Formula: see text] (as an [Formula: see text]-bimodule) is equivalent with the weak module amenability of the corner algebras [Formula: see text] and [Formula: see text] (as Banach [Formula: see text]-bimodules). The main aim of this paper is to investigate the module [Formula: see text]-amenability and weak module [Formula: see text]-amenability of the triangular Banach algebra [Formula: see text] of order three, where [Formula: see text] and [Formula: see text] are [Formula: see text]-module morphisms on [Formula: see text]. Also, we give some results for semigroup algebras.



2011 ◽  
Vol 61 (6) ◽  
Author(s):  
Abdolrasoul Pourabbas ◽  
Ebrahim Nasrabadi

AbstractLet A and B be unital Banach algebras and let M be a unital Banach A,B-module. Forrest and Marcoux [6] have studied the weak amenability of triangular Banach algebra $\mathcal{T} = \left[ {_B^{AM} } \right]$ and showed that T is weakly amenable if and only if the corner algebras A and B are weakly amenable. When $\mathfrak{A}$ is a Banach algebra and A and B are Banach $\mathfrak{A}$-module with compatible actions, and M is a commutative left Banach $\mathfrak{A}$-A-module and right Banach $\mathfrak{A}$-B-module, we show that A and B are weakly $\mathfrak{A}$-module amenable if and only if triangular Banach algebra T is weakly $\mathfrak{T}$-module amenable, where $\mathfrak{T}: = \{ [^\alpha _\alpha ]:\alpha \in \mathfrak{A}\} $.



Filomat ◽  
2018 ◽  
Vol 32 (19) ◽  
pp. 6627-6641
Author(s):  
H. Sadeghi ◽  
Bami Lashkarizadeh

Let A be a Banach algebra and T be an U-module homomorphism from U-bimodule B into U-bimodule A. We investigate module amenability (resp. module approximate amenability), module character amenability (resp. module character approximate amenability), module character biprojectivity and module character biflatness of A x Tu B for every two Banach U-bimodule A and B.



2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mahmood Lashkarizadeh Bami ◽  
Mohammad Valaei ◽  
Massoud Amini

We study the concept ofφ-module amenability of Banach algebras, which are Banach modules over another Banach algebra with compatible actions. Also, we compare the notions ofφ-amenability andφ-module amenability of Banach algebras. As a consequence, we show that, ifSis an inverse semigroup with finite setEof idempotents andl1Sis a commutative Banachl1E-module, thenl1S**isφ**-module amenable if and only ifSis finite, whenφ∈Homl1El1Sis an epimorphism. Indeed, we have generalized a well-known result due to Ghahramani et al. (1996).



1968 ◽  
Vol 20 ◽  
pp. 495-504 ◽  
Author(s):  
Bruce Alan Barnes

Given an algebra A, the elements of A induce linear operators on A by left and right multiplication. Various authors have studied Banach algebras A with the property that some or all of these multiplication maps are completely continuous operators on A ; see (1-5). In (3)1. Kaplansky defined an element u of a Banach algebra A to be completely continuous if the maps a ⟶ ua and a ⟶ au, a ∊ A, are completely continuous linear operators.



Author(s):  
Ali Ebadian ◽  
Ali Jabbari

Let [Formula: see text] and [Formula: see text] be two [Formula: see text]-algebras such that [Formula: see text] is a Banach [Formula: see text]-bimodule with the left and right compatible action of [Formula: see text] on [Formula: see text]. We define [Formula: see text] as a [Formula: see text]-algebra, where it is a strongly splitting [Formula: see text]-algebra extension of [Formula: see text] by [Formula: see text]. Normal, self-adjoint, unitary, invertible and projection elements of [Formula: see text] are characterized; sufficient and necessary conditions for existing unit and bounded approximate identity of [Formula: see text] as a Banach algebra and as a [Formula: see text]-algebra are given. We characterize ∗-automorphisms on [Formula: see text] and give some results related to ∗-homomorphisms, ∗-representations and completely bounded maps on this [Formula: see text]-algebra. Also, we have constructed a new Hilbert [Formula: see text]-module [Formula: see text] over [Formula: see text], where [Formula: see text] is a Hilbert [Formula: see text]-module over [Formula: see text] and [Formula: see text] is a Hilbert [Formula: see text]-module over [Formula: see text].



2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Abbas Sahleh ◽  
Abbas Zivari-Kazempour

We study Arens regularity of the left and right module actions of on , where is thenth dual space of a Banach algebra , and then investigate (quotient) Arens regularity of as a module extension of Banach algebras.



2019 ◽  
Vol 69 (2) ◽  
pp. 425-432
Author(s):  
Ebrahim Nasrabadi

Abstract Let A and B be Banach 𝔄-bimodule and Banach 𝔅-bimodule algebras, respectively. Also let M be a Banach A, B-module and Banach 𝔄, 𝔅-module with compatible actions. In the case of 𝔄 = 𝔅, the author along with Pourabbas [5] have studied the weak 𝔄-module amenability of triangular Banach algebra $\begin{array}{} \displaystyle \mathcal{T}=\left[\begin{array}{rr} A & M \\ & B \end{array} \right] \end{array}$ and showed that 𝓣 is weakly 𝔄-module amenable if and only if the corner Banach algebras A and B are weakly 𝔄-module amenable, where A, B and M are unital. In this paper we investigate a special structure of 𝔄 ⊕ 𝔅-bimodule derivation from 𝓣 into 𝓣∗ and show that 𝓣 is weakly 𝔄 ⊕ 𝔅-bimodule amenable if and only if the corner Banach algebras A and B are weakly 𝔄-module amenable and weakly 𝔅-module amenable, respectively, where A, B and M are essential and not necessary unital.



2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Madjid Eshaghi Gordji ◽  
Ali Jabbari ◽  
Gwang Hui Kim

LetAbe a ternary Banach algebra. We prove that ifAhas a left-bounded approximating set, thenAhas a left-bounded approximate identity. Moreover, we show that ifAhas bounded left and right approximate identities, thenAhas a bounded approximate identity. Hence, we prove Altman’s Theorem and Dixon’s Theorem for ternary Banach algebras.



Sign in / Sign up

Export Citation Format

Share Document