Relative Gorenstein rings and duality pairs

2019 ◽  
Vol 19 (08) ◽  
pp. 2050147
Author(s):  
Junpeng Wang ◽  
Zhenxing Di

Let [Formula: see text] be a ring (not necessarily commutative) and [Formula: see text] a bi-complete duality pair. We investigate the notions of (flat-typed) [Formula: see text]-Gorenstein rings, which unify Iwanaga–Gorenstein rings, Ding–Chen rings, AC-Gorenstein rings and Gorenstein [Formula: see text]-coherent rings. Using an abelian model category approach, we show that [Formula: see text] and [Formula: see text], the homotopy categories of all exact complexes of projective and injective [Formula: see text]-modules, are triangulated equivalent whenever [Formula: see text] is a flat-typed [Formula: see text]-Gorenstein ring.

2018 ◽  
Vol 28 (06) ◽  
pp. 959-977 ◽  
Author(s):  
Tiwei Zhao ◽  
Zenghui Gao ◽  
Zhaoyong Huang

Let [Formula: see text] be an integer. We introduce the notions of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Then we investigate the properties of these modules by using the properties of special finitely presented graded modules and obtain some equivalent characterizations of [Formula: see text]-gr-coherent rings in terms of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Moreover, we prove that the pairs (gr-[Formula: see text], gr-[Formula: see text]) and (gr-[Formula: see text], gr-[Formula: see text]) are duality pairs over left [Formula: see text]-coherent rings, where gr-[Formula: see text] and gr-[Formula: see text] denote the subcategories of [Formula: see text]-FP-gr-injective left [Formula: see text]-modules and [Formula: see text]-gr-flat right [Formula: see text]-modules respectively. As applications, we obtain that any graded left (respectively, right) [Formula: see text]-module admits an [Formula: see text]-FP-gr-injective (respectively, [Formula: see text]-gr-flat) cover and preenvelope.


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


2000 ◽  
Vol 43 (1) ◽  
pp. 100-104 ◽  
Author(s):  
James S. Okon ◽  
J. Paul Vicknair

AbstractA counterexample is given to a conjecture of Ikeda by finding a class of Gorenstein rings of embedding dimension 3 with larger Dilworth number than Sperner number. The Dilworth number of is computed when A is an unramified principal Artin local ring.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


2020 ◽  
pp. 1-18
Author(s):  
Naoki Endo ◽  
Shiro Goto ◽  
Ryotaro Isobe

Abstract The purpose of this paper is, as part of the stratification of Cohen–Macaulay rings, to investigate the question of when the fiber products are almost Gorenstein rings. We show that the fiber product $R \times _T S$ of Cohen–Macaulay local rings R, S of the same dimension $d>0$ over a regular local ring T with $\dim T=d-1$ is an almost Gorenstein ring if and only if so are R and S. In addition, the other generalizations of Gorenstein properties are also explored.


1973 ◽  
Vol 50 ◽  
pp. 227-232 ◽  
Author(s):  
Junzo Watanabe

Let A = R/, where R is a regular local ring of arbitrary dimension and is an ideal of R. If A is a Gorenstein ring and if height = 2, it is easily proved that A is a complete intersection, i.e., is generated by two elements (Serre [5], Proposition 3). Hence Gorenstein rings which are not complete intersections are of embedding codimension at least three. An example of these rings is found in Bass’ paper [1] (p. 29). This is obtained as a quotient of a three dimensional regular local ring by an ideal which is generated by five elements, i.e., generated by a regular sequence plus two more elements. In this paper, suggested by this example, we prove that if A is a Gorenstein ring and if height = 3, then is minimally generated by an odd number of elements. If A has a greater codimension, presumably there is no such restriction on the minimal number of generators for , as will be conceived from the proof.


2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


Author(s):  
Matthew Mastroeni ◽  
Hal Schenck ◽  
Mike Stillman

Abstract Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring $R$ of regularity three is Koszul. In [15], we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three, which are not Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the regularity of $R$ is four or more. Let $R$ be a quadratic Gorenstein ring having ${\operatorname {codim}} \ R = c$ and ${\operatorname {reg}} \ R = r \ge 4$. We prove that if $c = r+1$ then $R$ is always Koszul, and for every $c \geq r+2$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda [16] and Migliore–Nagel [19].


Sign in / Sign up

Export Citation Format

Share Document