Convergent and asymptotic expansions of solutions of second-order differential equations with a large parameter

2014 ◽  
Vol 12 (05) ◽  
pp. 523-536 ◽  
Author(s):  
Chelo Ferreira ◽  
José L. López ◽  
Ester Pérez Sinusía

We consider the second-order linear differential equation [Formula: see text] where x ∈ [0, X], X > 0, α ∈ (-∞, 2), Λ is a large complex parameter and g is a continuous function. The asymptotic method designed by Olver [Asymptotics and Special Functions (Academic Press, New York, 1974)] gives the Poincaré-type asymptotic expansion of two independent solutions of the equation in inverse powers of Λ. We add initial conditions to the differential equation and consider the corresponding initial value problem. By using the Green's function of an auxiliary problem, we transform the initial value problem into a Volterra integral equation of the second kind. Then using a fixed point theorem, we construct a sequence of functions that converges to the unique solution of the problem. This sequence has also the property of being an asymptotic expansion for large Λ (not of Poincaré-type) of the solution of the problem. Moreover, we show that the idea may be applied also to nonlinear differential equations with a large parameter.

Author(s):  
Farrukh Nuriddin ugli Dekhkonov

In this paper, we consider with a class of system of differential equations whose argument transforms are involution. In this an initial value problem for a differential equation with involution is reduced to an initial value problem for a higher order ordinary differential equation. Than either two initial conditions are necessary for a solution, the equation is then reduced to a boundary value problem for a higher order ODE.


2021 ◽  
Vol 102 (2) ◽  
pp. 16-24
Author(s):  
A. Ashyralyev ◽  
◽  
M. Ashyralyyeva ◽  
O. Batyrova ◽  
◽  
...  

In the present paper the initial value problem for the second order ordinary differential equation with damping term and involution is investigated. We obtain equivalent initial value problem for the fourth order ordinary differential equations to the initial value problem for second order linear differential equations with damping term and involution. Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear differential equation with damping term and involution is proved. Theorem on existence and uniqueness of bounded solution of initial value problem for second order ordinary nonlinear differential equation with damping term and involution is established.


Author(s):  
Yaroslav Pelekh ◽  
Andrii Kunynets ◽  
Halyna Beregova ◽  
Tatiana Magerovska

Numerical methods for solving the initial value problem for ordinary differential equations are proposed. Embedded methods of order of accuracy 2(1), 3(2) and 4(3) are constructed. To estimate the local error, two-sided calculation formulas were used, which give estimates of the main terms of the error without additional calculations of the right-hand side of the differential equation, which favorably distinguishes them from traditional two-sided methods of the Runge- Kutta type.


Sign in / Sign up

Export Citation Format

Share Document