The Littlewood–Paley decomposition for periodic functions and applications to the Boussinesq equations

2020 ◽  
Vol 18 (04) ◽  
pp. 639-682 ◽  
Author(s):  
Yichen Dai ◽  
Weiwei Hu ◽  
Jiahong Wu ◽  
Bei Xiao

The Littlewood–Paley decomposition for functions defined on the whole space [Formula: see text] and related Besov space techniques have become indispensable tools in the study of many partial differential equations (PDEs) with [Formula: see text] as the spatial domain. This paper intends to develop parallel tools for the periodic domain [Formula: see text]. Taking advantage of the boundedness and convergence theory on the square-cutoff Fourier partial sum, we define the Littlewood–Paley decomposition for periodic functions via the square cutoff. We remark that the Littlewood–Paley projections defined via the circular cutoff in [Formula: see text] with [Formula: see text] in the literature do not behave well on the Lebesgue space [Formula: see text] except for [Formula: see text]. We develop a complete set of tools associated with this decomposition, which would be very useful in the study of PDEs defined on [Formula: see text]. As an application of the tools developed here, we study the periodic weak solutions of the [Formula: see text]-dimensional Boussinesq equations with the fractional dissipation [Formula: see text] and without thermal diffusion. We obtain two main results. The first assesses the global existence of [Formula: see text]-weak solutions for any [Formula: see text] and the existence and uniqueness of the [Formula: see text]-weak solutions when [Formula: see text] for [Formula: see text]. The second establishes the zero thermal diffusion limit with an explicit convergence rate.

2019 ◽  
Vol 17 (6) ◽  
pp. 1595-1624 ◽  
Author(s):  
Nicole Boardman ◽  
Ruihong Ji ◽  
Hua Qiu ◽  
Jiahong Wu

Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

The purpose of this chapter is to give some historical landmarks to the reader. The concept of weak solutions certainly has its origin in mechanics; the article by C. Oseen [100] is referred to in the seminal paper by J. Leray. In that famous article, J. Leray proved the global existence of solutions of (NSν) in the sense of Definition 2.5, page 42, in the case when Ω = R3. The case when Ω is a bounded domain was studied by E. Hopf in. The study of the regularity properties of those weak solutions has been the purpose of a number of works. Among them, we recommend to the reader the fundamental paper of L. Caffarelli, R. Kohn and L. Nirenberg. In two space dimensions, J.-L. Lions and G. Prodi proved in [91] the uniqueness of weak solutions (this corresponds to Theorem 3.2, page 56, of this book). Theorem 3.3, page 58, of this book shows that regularity and uniqueness are two closely related issues. In the case of the whole space R3, theorems of that type have been proved by J. Leray in.


2019 ◽  
Vol 61 (3) ◽  
pp. 305-319
Author(s):  
CRISTIAN-PAUL DANET

This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles.


2018 ◽  
Vol 15 (04) ◽  
pp. 693-719 ◽  
Author(s):  
Nicolas Besse ◽  
Philippe Bechouche

We investigate the regularity of weak solutions of the relativistic Vlasov–Maxwell system by using Fourier analysis and the smoothing effect of low velocity particles. This smoothing effect has been used by several authors (see Glassey and Strauss 1986; Klainerman and Staffilani, 2002) for proving existence and uniqueness of [Formula: see text]-regular solutions of the Vlasov–Maxwell system. This smoothing mechanism has also been used to study the regularity of solutions for a kinetic transport equation coupled with a wave equation (see Bouchut, Golse and Pallard 2004). Under the same assumptions as in the paper “Nonresonant smoothing for coupled wave[Formula: see text]+[Formula: see text]transport equations and the Vlasov–Maxwell system”, Rev. Mat. Iberoamericana 20 (2004) 865–892, by Bouchut, Golse and Pallard, we prove a slightly better regularity for the electromagnetic field than the one showed in the latter paper. Namely, we prove that the electromagnetic field belongs to [Formula: see text], with [Formula: see text].


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
C. A. O. Henriques ◽  
◽  
C. M. B. Monteiro ◽  
D. González-Díaz ◽  
C. D. R Azevedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document