SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES

2005 ◽  
Vol 04 (02) ◽  
pp. 493-581 ◽  
Author(s):  
GEERT-JAN KROES ◽  
MARK F. SOMERS

The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0) H 2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecule's vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H 2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100) H2 reacts depending on its vibrational state. Future theoretical studies of H 2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H 2 with complex metal surfaces.

2016 ◽  
Vol 7 (3) ◽  
pp. 1840-1845 ◽  
Author(s):  
Tianhui Liu ◽  
Zhaojun Zhang ◽  
Bina Fu ◽  
Xueming Yang ◽  
Dong H. Zhang

A seven-dimensional quantum dynamics study for the dissociative chemisorption of H2O on Cu(111) is reported, using the time-dependent wave-packet approach.


RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


2016 ◽  
Vol 18 (22) ◽  
pp. 15054-15059 ◽  
Author(s):  
Yeongrok Gim ◽  
Daekyeom Kim ◽  
Minkyu Kyeong ◽  
Seunghwan Byun ◽  
Yuri Park ◽  
...  

A new series of D–A–D-type small-molecule photovoltaic donors are designed and screened before synthesis using time-dependent density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document