THEORETICAL MECHANISMS AND KINETICS FOR THE REACTION OF DIMETHYL SULFIDE AND OZONE IN WATER VAPOR

2005 ◽  
Vol 04 (04) ◽  
pp. 1101-1117 ◽  
Author(s):  
ANGELA SHIH ◽  
CALINA CIOBANU ◽  
FU-MING TAO

The reaction mechanisms and kinetics for DMS + O 3 ⇒ DMSO + O 2 in water vapor are studied using density functional theory. A series of reaction pathways are determined with molecular clusters containing the reacting species and up to three water molecules. The results show that the energy barrier, defined as the energy difference between the reactant complex and the transition state, decreases progressively as each water molecule is added to the reacting system. A decreasing energy barrier is attributed to favorable electrostatic interactions between the reacting species and water at the transition state and at the more polar product. Rate constants for the second-order reactions, involving different combinations of hydrated reactants up to three water molecules, are calculated using transition state theory with Eckart tunneling corrections. Effective rate constants for DMS + O 3 ⇒ DMSO + O 2 are obtained using the calculated second-order rate constants and the concentrations of hydrated reactants present in saturated water vapor. The results show that the rate of reaction for DMS + O 3 ⇒ DMSO + O 2 increases dramatically in the presence of water vapor, by up to seven orders of magnitude for reactions involving three water molecules. The study implies that the gas-phase reaction of DMS with ozone is significant in the troposphere and can greatly influence the global climate.

2013 ◽  
Vol 1547 ◽  
pp. 173-182
Author(s):  
Steven S. Burnett ◽  
James W. Mitchell

ABSTRACTThe mechanism for the gelation reaction of colloidal silica, Si(OH)4 +Si(OH)3 (O)- ----> Si2O8H5- + H2O, by an anionic pathway was investigated using density functional theory(DFT). Using transition state theory, the rate constants were obtained by analyzing the potential energy surface at the reactants, saddle point, and the products. In addition, reaction rate constants were investigated in the presence of ammonium chloride (NH4Cl) and sodium chloride (NaCl). These salts act as catalysts to induce gelation by destabilizing the double layer of colloidal silica to allow for Van der Waal interactions. Furthermore, it was observed that ammonium chloride plays an important role by initiating a hydride transfer allowing the reaction to proceed from the second transition state to the final product.


Sign in / Sign up

Export Citation Format

Share Document