Recent progress in adapting Poisson–Boltzmann methods to molecular simulations

2014 ◽  
Vol 13 (03) ◽  
pp. 1430001 ◽  
Author(s):  
Li Xiao ◽  
Changhao Wang ◽  
Ray Luo

Electrostatic solvation modeling based upon the Poisson–Boltzmann equation is widely used in studies of biomolecular structures and functions. This manuscript provides a thorough review of published efforts to adapt the numerical Poisson–Boltzmann methods to molecular simulations so that these methods can be extended to biomolecular studies involving conformational fluctuation and/or dynamics. We first review the fundamental works on how to define the electrostatic free energy and the Maxwell stress tensor. These topics are followed by three different strategies in developing algorithms to compute electrostatic forces and how to improve their numerical performance. Finally procedures are also presented in detail on how to discretize these algorithms for numerical calculations. Given the pioneer works reviewed here, further developmental efforts will be on how to balance efficiency and accuracy in these theoretical sound approaches — two important issues in applying any numerical algorithms for routine biomolecular applications. Even if not reviewed here, more advanced numerical solvers are certainly necessary to achieve higher accuracy than the widely used classical methods to improve the overall performance of the numerical Poisson–Boltzmann methods.

2020 ◽  
Vol 26 (3) ◽  
pp. 223-244
Author(s):  
W. John Thrasher ◽  
Michael Mascagni

AbstractIt has been shown that when using a Monte Carlo algorithm to estimate the electrostatic free energy of a biomolecule in a solution, individual random walks can become entrapped in the geometry. We examine a proposed solution, using a sharp restart during the Walk-on-Subdomains step, in more detail. We show that the point at which this solution introduces significant bias is related to properties intrinsic to the molecule being examined. We also examine two potential methods of generating a sharp restart point and show that they both cause no significant bias in the examined molecules and increase the stability of the run times of the individual walks.


Author(s):  
Weihua Geng

AbstractNumerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement on both efficiency and accuracy. In the past a few years, we developed several boundary integral Poisson-Boltzmann solvers in pursuing accuracy, efficiency, and the combination of both. In this paper, we summarize the features and functions of these solvers, and give instructions and references for potential users. Meanwhile, we quantitatively report the solvation free energy computation of these boundary integral PB solvers benchmarked with Matched Interface Boundary Poisson-Boltzmann solver (MIBPB), a current 2nd order accurate finite difference Poisson-Boltzmann solver.


2014 ◽  
Vol 2 (1) ◽  
pp. 86-97 ◽  
Author(s):  
Dexuan Xie ◽  
Yi Jiang ◽  
Jinyong Ying

Abstract The Poisson-Boltzmann equation (PBE) is one important implicit solvent continuum model for calculating electrostatics of protein in ionic solvent. Several numerical algorithms and program packages have been developed but verification and comparison between them remains an interesting topic. In this paper, a PBE test model is presented for a protein in a spherical solute region, along with its analytical solution. It is then used to verify a PBE finite element solver and applied to a numerical comparison study between a finite element solver and a finite difference solver. Such a study demonstrates the importance of retaining the interface conditions in the development of PBE solvers.


2015 ◽  
Vol 48 ◽  
pp. 420-446 ◽  
Author(s):  
Mireille Bossy ◽  
Nicolas Champagnat ◽  
Hélène Leman ◽  
Sylvain Maire ◽  
Laurent Violeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document