Conformational, vibrational and electronic properties of CH3(CH2)3CX2NH2 (X = H, F, Cl or Br): Halogen and solvent effects

2015 ◽  
Vol 14 (04) ◽  
pp. 1550031
Author(s):  
Cemal Parlak ◽  
Münevver Gökce ◽  
Mahir Tursun ◽  
Lydia Rhyman ◽  
Ponnadurai Ramasami

The effects of varying halogen and solvent, in terms of vibrational and electronic properties, on the different conformers of 1-pentanamine [ CH 3( CH 2)4 NH 2] and 1,1-dihalogeno-pentan-1-amines [ CH 3( CH 2)3 CX 2 NH 2; X = F , Cl or Br ] were investigated by employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The B3LYP functional was used with the 6-31++G(d,p) basis set. Computations were focused on the 10 conformational isomers of the compounds in the gas phase and both in non-polar (benzene) and polar (methanol) solvents. The present work explores the effects of the halogen and the medium on the conformational preference, and geometrical parameter, dipole moment, NH 2 vibrational frequency, UV spectrum, highest occupied and lowest unoccupied molecular orbitals (HOMO–LUMO) orbital and DOS diagram of the conformers. The atypical characteristics of fluorine and bromine affecting the electrical bandgap, chemical hardness, electronegativity, PDOS or OPDOS plots and the absorption band are observed correspondingly. The findings of this work can be useful to those systems involving changes in the conformations analogous to the compounds studied.

2011 ◽  
Vol 8 (s1) ◽  
pp. S195-S202
Author(s):  
Y. Belhocine ◽  
M. Bencharif

The structure and spectroscopic properties of polycyclic aromatic ligands of 2,3,6,7,10,11-hexakis (alkylthio) triphenylene (alkyl: methyl, ethyl, and isopropyl; corresponding to the abbreviations of the molecules: HMTT, HETT and HiPTT) were studied using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods with triple-zeta valence polarization (TZVP) basis set. It was shown that the type of functional theory used, Becke-Perdew (BP) and Leeuwen-Baerends (LB94) implemented in Amsterdam Density functional (ADF) program package, does not have essential influence on the geometry of studied compounds in both ground and excited states. However, significant differences were obtained for the band gap values with relativistic effects of the zero order regular approximation scalar corrections (ZORA) and LB94 functional seems to reproduce better the experimental optical band gap of these systems.


2019 ◽  
Vol 74 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Ming Hui ◽  
Qing-Huai Zhao ◽  
Zhi-Peng Wang ◽  
Shuai Zhang ◽  
Gen-Quan Li

AbstractThe effects of halogen element X (X = Br, I) doping on the geometrical structures and electronic properties of neutral aluminium clusters are systematically studied by utilising the density functional theory calculations. The structures of X-doped clusters show the three-dimensional forms with increasing atomic number except for n = 3 and X (X = Br, I) atom prefer to occupy the surface site of the host Aln clusters. BrAl7 and IAl7 clusters are the most stable geometries. The HOMO-LUMO energy gap and chemical hardness show an odd–even alternative phenomenon. The charges always transfer from the Al atoms to the X (X = Br, I) atom. Finally, the dipole and polarisability are discussed.


2021 ◽  
Vol 18 (2) ◽  
pp. 179-189
Author(s):  
Vishnu A. Adole ◽  
Tejendra R. Rajput ◽  
Bapu S. Jagdale

The ethyl 6-amino-5-cyano-2-methyl-4-(4-nitrophenyl)-4H-pyran-3-carboxylate (ACNPPC) was synthesized using an environmentally friendly method and looked into in terms ofstructural, UV-visible, vibrational, and computational analysis. In the gaseous phase, calculations of the density functional theory (DFT) with B3LYP/6-311G(d,p) level were performed. Using Time-dependent density functional theory (TD-DFT) with the B3LYP/6-311G(d,p) basis set method, the HOMO and LUMO energies are calculated. For assessing electrophilic and nucleophilic reactive sites, the molecular electrostatic surface potential (MESP) and contour plot were plotted over the optimized structure. Using computed and experimental vibrational spectra, vibrational assignments were elucidated. To illustrate the charge density in the title compound, Mulliken atomic charges are disclosed. In addition, using vibrational analysis, some thermochemical functions have also been derived. Theoretical simulations have shown the best relationship with experimental results obtained with the B3LYP/6-311G(d,p) level of theory at the DFT and TD-DFT methods.


2018 ◽  
Vol 33 (1) ◽  
pp. 71
Author(s):  
Ali Hashem Essa ◽  
A. F. Jalbout

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 –[ 5 – (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]- tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.


2013 ◽  
Vol 652-654 ◽  
pp. 815-818
Author(s):  
Yan Wei ◽  
Jia Xin Xu ◽  
Xiao Mei Yuan ◽  
Xiao Hui Zheng

We have studied the structures and electronic properties of PdCn (n=2-12) using the density functional theory in this paper. Though calculating, we found that the linear isomers are most stable for PdCn(n=2-9) clusters. N=10 is turning point, and the bicyclical structure is most stable for PdC10 cluster. Cyclic structures have the lowest energy for PdC11 and PdC12 clusters.


2021 ◽  
Author(s):  
D. Nicksonsebastin ◽  
P. Pounraj ◽  
Prasath M

Abstract Perylene based novel organic sensitizers for the Dye sensitized solar cell applications are investigated by using Density functional theory (DFT) and time dependant density functional theory (TD-DFT).The designed sensitizers have perylene and dimethylamine (DM) and N-N-dimethylaniline(DMA) functionalized perylene for the dssc applications.π-spacers are thiophene andcyanovinyl groups and cyanoacrylic acid is chosen as the acceptor for the designed sensitizers. The studied sensitizers were fully optimized by density functional theory at B3LYP/6-311G basis set on gas phase and DMF phase. The electronic absorption of the sensitizers is analyzed by TD-DFT at B3LYP/6-311G basis set in both gas and DMF phase.


2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 28
Author(s):  
Dawid Zych

In this work, the necessity of synthesis of 1,3-di(hetero)aryl-7-substituted pyrenes is presented based on the results of theoretical calculations by using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) by using Gaussian 09 program with B3LYP exchange-correlation functional and 6-31G** basis set. What is more, the synthetic routes with feasible reagents and conditions are presented. The subject of theoretical considerations are two pyrene derivatives which contain at position 1 and 3 pyrazolyl substituents and at position 7 amine (1) or boron (2) derivative. The theoretical calculations were also performed for the osmium complexes with mentioned ligands (3 and 4). The influence of electron-donating/accepting character of the substituent at position 7 of pyrene on the properties of molecules has been established.


Sign in / Sign up

Export Citation Format

Share Document