A comparison of different models with motor dysfunction after traumatic brain injury in adult rats

2014 ◽  
Vol 13 (04) ◽  
pp. 579-593 ◽  
Author(s):  
Meng Wang ◽  
Hongjian Pu ◽  
Yingchao Liu ◽  
Zengtao Wang ◽  
Bomin Wang ◽  
...  
Brain ◽  
2009 ◽  
Vol 132 (3) ◽  
pp. 684-694 ◽  
Author(s):  
K. Caeyenberghs ◽  
N. Wenderoth ◽  
B. C. M. Smits-Engelsman ◽  
S. Sunaert ◽  
S. P. Swinnen

2013 ◽  
pp. 27-38
Author(s):  
Sandra A. Acosta ◽  
Naoki Tajiri ◽  
Paula C. Bickford ◽  
Cesar V. Borlongan

Author(s):  
Swatabdi R. Kamal ◽  
Shreya Potukutchi ◽  
David J. Gelovani ◽  
Robin E. Bonomi ◽  
Srinivasu Kallakuri ◽  
...  

2001 ◽  
Vol 94 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Asim Mahmood ◽  
Dunyue Lu ◽  
Yi Li ◽  
Jae Li Chen ◽  
Michael Chopp

Object. The authors tested the hypothesis that intracranial bone marrow (BM) transplantation after traumatic brain injury (TBI) in rats provides therapeutic benefit. Methods. Sixty-six adult Wistar rats, weighing 275 to 350 g each, were used for the experiment. Bone marrow prelabeled with bromodeoxyuridine (BrdU) was harvested from tibias and femurs of healthy adult rats. Other animals were subjected to controlled cortical impact, and BM was injected adjacent to the contusion 24 hours after the impact. The animals were killed at 4, 7, 14, or 28 days after transplantation. Motor function was evaluated both before and after the injury by using the rotarod test. After the animals had been killed, brain sections were examined using hemotoxylin and eosin and immunohistochemical staining methods. Histological examination revealed that, after transplantation, BM cells survived, proliferated, and migrated toward the injury site. Some of the BrdU-labeled BM cells were reactive, with astrocytic (glial fibrillary acid protein) and neuronal (NeuN and microtubule-associated protein) markers. Transplanted BM expressed proteins phenotypical of intrinsic brain cells, that is, neurons and astrocytes. A statistically significant improvement in motor function in rats that underwent BM transplantation, compared with control rats, was detected at 14 and 28 days posttransplantation. Conclusions. On the basis of their findings, the authors assert that BM transplantation improves neurological outcome and that BM cells survive and express nerve cell proteins after TBI.


1999 ◽  
Vol 19 (7) ◽  
pp. 762-770 ◽  
Author(s):  
Michio Nakamura ◽  
Kathryn E. Saatman ◽  
James E. Galvin ◽  
Uwe Scherbel ◽  
Ramesh Raghupathi ◽  
...  

The authors evaluated the neurobehavioral and neuropathologic sequelae after traumatic brain injury (TBI) in transgenic (TG) mice expressing truncated high molecular weight neurofilament (NF) protein fused to beta-galactosidase (NFH-LacZ), which develop Lewy body-like NF-rich inclusions throughout the CNS. TG mice and their wild-type (WT) littermates were subjected to controlled cortical impact brain injury (TG, n=19; WT, n=17) or served as uninjured controls (TG, n =11; WT, n =11). During a 3-week period, mice were evaluated with an array of neuromotor function tests including neuroscore, beam balance, and both fast and slow acceleration rotarod. Brain-injured WT and TG mice showed significant motor dysfunction until 15 days and 21 days post-injury, respectively ( P < .025). Compared with brain-injured WT mice, brain-injured TG mice had significantly greater motor dysfunction as assessed by neuroscore ( P < .01) up to and including 15 days post-injury. Similarly, brain-injured TG mice performed significantly worse than brain-injured WT mice on slow acceleration rotarod at 2, 8, and 15 days post-injury ( P < .05), and beam balance over 2 weeks post-injury ( P < .01). Histopathologic analysis showed significantly greater tissue loss in the injured hemisphere in TG mice at 4 weeks post-injury ( P < .01). Together these data show that NFH-LacZ TG mice are more behaviorally and histologically vulnerable to TBI than WT mice, suggesting that the presence of NF-rich inclusions may exacerbate neuromotor dysfunction and cell death after TBI.


2017 ◽  
Vol 72 (9) ◽  
pp. 1233-1238 ◽  
Author(s):  
Raquel C Gardner ◽  
Carrie B Peltz ◽  
Kimbra Kenney ◽  
Kenneth E Covinsky ◽  
Ramon Diaz-Arrastia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document