SIP Xd-frames and their perturbations in uniformly convex Banach spaces
In this paper, we introduce the definitions of SIP-I and SIP-II Xd-frames in a uniformly convex, separable Banach space X with respect to a BK-space Xd (here SIP represents semi-inner product), both of them are defined as sequence of elements in X. We characterize SIP-I and SIP-II Xd-frames in terms of the corresponding synthesis and analysis operators, respectively, then we consider perturbations for both of them. Furthermore, we also introduce the definitions of SIP Banach frames and SIP atomic decompositions. Under certain assumptions, we establish the relationship between SIP Banach frames and SIP atomic decompositions, and therefore obtain reconstruction formulas for every element in X and X* by using a pair of SIP-I and SIP-II Xd-frames for X. Finally, we discuss perturbations of SIP Banach frames and SIP atomic decompositions.