Assessment of optimized Markov models in protein fold classification

2014 ◽  
Vol 12 (04) ◽  
pp. 1450016 ◽  
Author(s):  
Christos Lampros ◽  
Thomas Simos ◽  
Themis P. Exarchos ◽  
Konstantinos P. Exarchos ◽  
Costas Papaloukas ◽  
...  

Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%.

1997 ◽  
Vol 29 (01) ◽  
pp. 92-113 ◽  
Author(s):  
Frank Ball ◽  
Sue Davies

The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space. The state space is partitioned into two classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class the process is in. In many experiments channel openings occur in bursts. This can be modelled by partitioning the closed states further into ‘short-lived’ and ‘long-lived’ closed states, and defining a burst of openings to be a succession of open sojourns separated by closed sojourns that are entirely within the short-lived closed states. There is also evidence that bursts of openings are themselves grouped together into clusters. This clustering of bursts can be described by the ratio of the variance Var (N(t)) to the mean[N(t)] of the number of bursts of openings commencing in (0, t]. In this paper two methods of determining Var (N(t))/[N(t)] and limt→∝Var (N(t))/[N(t)] are developed, the first via an embedded Markov renewal process and the second via an augmented continuous-time Markov chain. The theory is illustrated by a numerical study of a molecular stochastic model of the nicotinic acetylcholine receptor. Extensions to semi-Markov models of ion channel gating and the incorporation of time interval omission are briefly discussed.


2009 ◽  
Vol 39 (10) ◽  
pp. 907-914 ◽  
Author(s):  
Christos Lampros ◽  
Costas Papaloukas ◽  
Kostas Exarchos ◽  
Dimitrios I. Fotiadis ◽  
Dimitrios Tsalikakis

1997 ◽  
Vol 29 (1) ◽  
pp. 92-113 ◽  
Author(s):  
Frank Ball ◽  
Sue Davies

The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space. The state space is partitioned into two classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class the process is in. In many experiments channel openings occur in bursts. This can be modelled by partitioning the closed states further into ‘short-lived’ and ‘long-lived’ closed states, and defining a burst of openings to be a succession of open sojourns separated by closed sojourns that are entirely within the short-lived closed states. There is also evidence that bursts of openings are themselves grouped together into clusters. This clustering of bursts can be described by the ratio of the variance Var (N(t)) to the mean [N(t)] of the number of bursts of openings commencing in (0, t]. In this paper two methods of determining Var (N(t))/[N(t)] and limt→∝ Var (N(t))/[N(t)] are developed, the first via an embedded Markov renewal process and the second via an augmented continuous-time Markov chain. The theory is illustrated by a numerical study of a molecular stochastic model of the nicotinic acetylcholine receptor. Extensions to semi-Markov models of ion channel gating and the incorporation of time interval omission are briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhao Wu ◽  
Naixue Xiong ◽  
Yannong Huang ◽  
Qiong Gu ◽  
Chunyang Hu ◽  
...  

At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important revolution of software industry. The cloud services composition is one of the key techniques in software development. The optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques, for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service composition application based on the multiple state system theory is presented. Then the reliability and performance definition based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is presented. In the end, the illustrative examples are given.


Sign in / Sign up

Export Citation Format

Share Document