fast optimization
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 42)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Mehmet Cagri Kaymak ◽  
Ali Rahnamoun ◽  
Kurt A. O'Hearn ◽  
Adri C. T. van Duin ◽  
Kenneth M. Merz Jr. ◽  
...  

Molecular dynamics (MD) simulations facilitate the study of physical and chemical processes of interest. Traditional classical MD models lack reactivity to explore several important phenomena; while quantum mechanical (QM) models can be used for this purpose, they come with steep computational costs. The reactive force field (ReaxFF) model bridges the gap between these approaches by incorporating dynamic bonding and polarizability. To achieve realistic simulations using ReaxFF, model parameters must be optimized against high fidelity training data, typically with QM accuracy. Existing parameter optimization methods for ReaxFF consist of black-box techniques using genetic algorithms or Monte-Carlo methods. Due to the stochastic behavior of these methods, the optimization process can require millions of error evaluations for complex parameter fitting tasks, significantly hampering the rapid development of high quality parameter sets. In this work, we present JAX ReaxFF, a novel software tool that leverages modern machine learning infrastructure to enable extremely fast optimization of ReaxFF parameters. By calculating gradients of the loss function using the JAX library, we are able to utilize highly effective local optimization methods, such as the limited Broyden–Fletcher–Goldfarb–Shanno (LBFGS) and Sequential Least Squares Programming (SLSQP) methods. As a result of the performance portability of JAX, JAX-ReaxFF can execute efficiently on multi-core CPUs, GPUs (or even TPUs). By leveraging the gradient information and modern hardware accelerators, we are able to decrease parameter optimization time for ReaxFF from days to mere minutes. JAX-ReaxFF framework can also serve as a sandbox environment for domain scientists to explore customizing the ReaxFF functional form for more accurate modeling.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 567
Author(s):  
Fengchang Liu ◽  
Wei Li ◽  
Weiguo Zhao ◽  
Xiaodong Wang ◽  
Xiaoyu Wang

According to the requirements of high force-thermal stability and high performance of a space telescope, a space mirror assembly must not be influenced by environmental factors. In this study, a space mirror assembly under load conditions, such as gravity, thermal, and assembly error, is considered. After the mirror is optimized, the surface shape error is reduced by 22%, and the mass is increased by 0.113 kg. In order to improve the efficiency of integration optimization, we present a fast optimization method using mesh deformation to be applied to the flexure. The size parameters of flexure and axial mount position are obtained by optimization. With our method, the single optimization time reduces from 10 min to 40 s, which can improve the efficiency of multi-objective optimization. The mirror assembly is fabricated and assembled based on optimization results. Finite element analysis (FEA) and test results for the space mirror assembly confirm the validity and feasibility of the fast optimization method, and we believe that the flexure based on fast optimization meets the requirements of a space mirror assembly for space applications.


Astrodynamics ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 391-402
Author(s):  
An-Yi Huang ◽  
Ya-Zhong Luo ◽  
Heng-Nian Li

2021 ◽  
Author(s):  
Mehmet Cagri Kaymak ◽  
Ali Rahnamoun ◽  
Kurt A. O'Hearn ◽  
Adri C. T. van Duin ◽  
Kenneth M. Merz Jr. ◽  
...  

2021 ◽  
Vol 46 ◽  
pp. 101292
Author(s):  
Ashraf Bsebsu ◽  
Gan Zheng ◽  
Sangarapillai Lambotharan

Author(s):  
Khafiz Muradov ◽  
Morteza Haghighat Sefat ◽  
Mojtaba MoradiDowlatAbad

Sign in / Sign up

Export Citation Format

Share Document