APPLICATION OF GENETIC ALGORITHM FOR PSS AND FACTS-BASED CONTROLLER DESIGN

2008 ◽  
Vol 05 (04) ◽  
pp. 607-620 ◽  
Author(s):  
SIDHARTHA PANDA ◽  
NARAYANA PRASAD PADHY

This paper investigates the application of genetic algorithm (GA) for the design of a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)–based controller to enhance power system stability. The design problem of the proposed controllers is formulated as an optimization problem and the GA optimization technique is employed to search for optimal controller parameters. The proposed controllers are tested on a weakly connected power system under various disturbances and loading conditions, and compared with a conventional PSS (CPSS). The eigenvalue analysis and nonlinear simulation results show the effectiveness and robustness of the proposed controllers.

Author(s):  
Baskaran Jeevarathinam

The flexible AC transmission system (FACTS) in a power system improves the stability, reduces the losses, reduces the cost of generation and also improves the loadability of the system. In the proposed work, a non-traditional optimization technique, a Genetic Algorithm (GA) is conjunction with Fuzzy logic (FL) is used to optimize the various process parameters involved in introduction of FACTS devices in a power system. The various parameters taken into consideration were the location of the device, their type, and their rated value of the devices. The simulation was performed on a 30-bus power system with various types of FACTS controllers, modeled for steady state studies. The optimization results are compared to the solution given by another search method. This comparison confirms the efficiency of the proposed method which makes it promising to solve combinorial problem of FACTS device location in a power system network.


2019 ◽  
Vol 8 (4) ◽  
pp. 11456-11459

Generally, power system faces the problem to transfer power from one system to another system without any fluctuations, with minimal of system losses. To overcome this problems, a flexible ac transmission system is implemented in this paper. In present scenario, facts devices are used to reduce the transmission losses for improvising transmission capacity and also to improve the system capability. Unified Power Flow Controller plays a most prominent role in FACTS controller to improve the system stability. The structure of UPFC is combination of back-back converters with boosting and zigzag transformer. This type of UPFC system consists of high losses due to presence of magnetic properties in this transformer. With this, a transformer-less multilevel inverter based UPFC topology is proposed in this paper. This paper focuses on the modulation of transformerless UPFC with PSO, which controlsfundamental frequency for better controlling of active and reactive power, harmonic minimization, and improvement in efficiency of system by controlling DC link voltage


Kursor ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 87
Author(s):  
IBG Manuaba

Power system stabilizer (PSS) and flexible AC transmission system (FACTS) damping controller to improve the stability of the power system has been widely used. A coordinated control method based on the combined computational evolutionary theory is proposed to overcome some of damping controllers simultaneously so as to keep the allowable level of power system damping. It works by making full use of favorable interaction between the controlling and minimizing adverse interactions so that the power system oscillations can be suppressed effectively. Proportional integral derivative (PID) controller tuning based power system stabilizer types PSS3B (PIDPSS3B), static var compensator (SVC) and automatic voltage regulator (AVR) presented in this paper. PID controller gain parameters such as proportional, integral factor, differential coefficient and get AVR selected and optimized by BF-PSOTVAC. The integral time absolut error (ITAE) standards of optimization design as objective function. The results of simulations show that performance index of system the proposed method is 42.7890. The BF-PSOTVAC method has the capability to damping optimally and suppresses error to minimum.


2014 ◽  
Vol 622 ◽  
pp. 111-120
Author(s):  
Ananthavel Saraswathi ◽  
S. Sutha

Nowadays in the restructured scenario, the main challenging objective of the modern power system is to avoid blackouts and provide uninterrupted quality power supply with dynamic response during emergency to improve power system security and stability. In this sense the convertible static compensator (CSC) that is the Generalized Inter line power flow controller (GIPFC), can control and optimize power flow in multi-line transmission system instead of controlling single line like its forerunner FACTS (Flexible AC Transmission System) controller. By adding a STATCOM (Static synchronous Shunt Converter) at the front end of the test power system and connecting to the common DC link of the IPFC, it is possible to bring the power factor to higher level and harmonics to the lower level and this arrangement is popularly known as Generalized Inter line power flow controller (GIPFC). In this paper a new concept of GIPFC based on incorporating a voltage source converter with zero sequence injection SPWM technique is presented for reinforcement of system stability margin. A detailed circuit model of modified GIPFC is developed and its performance is validated for a standard test system. Simulation is done using MATLAB Simulink.Index Terms—Convertible static controller, Flexible AC Transmission System (FACTS), Generalized Interline Power Flow Controller (GIPFC),STATCOM, SSSC, Reactive power compensation.


Author(s):  
B. Srinivasa Rao ◽  
◽  
D. Vijaya Kumar ◽  
K. Kiran Kumar ◽  
◽  
...  

Nowadays, the improvement of power quality is the major concern in power system scenario. These problems mainly caused due to utilization of different load conditions to the power system. To mitigate these problems different methods are implemented in literature. As per literature analysis the one of the Flexible AC Transmission System called as unified power quality conditioner (UPQC) plays a key role. The series and shunt controllers of UPQC designed with 9-level inverters to reduce the harmonic distortions. An instantaneous PQ theory is used to generate the reference signals required for series and shunt controllers along with dq-transformation analysis. A Cuckoo optimization technique is used to tune the parameters of PI controller in shunt controller to achieve better harmonic distortions and improve power quality. This proposed system is to be tested and verified in MATLAB/SIMULINK.


Author(s):  
Aditya Tiwari ◽  
K. K. Swarnkar ◽  
S. Wadhwani ◽  
A. K. Wadhwani

The introduction of flexible AC transmission system (FACTS) in a power system reduces the losses, reduces the cost of generation, and improves the stability also improves the load capability of the system. In this paper, a non-traditional optimization technique, genetic algorithm is used to optimize the various process parameters involved of FACTS devices in a power system The various parameter taken into the consideration were the location of the FACTS were their types and their rated value of the device. A genetic algorithm (GA) is simultaneously is used to minimize the total generation cost, and power loss/voltage deviation with in true and reactive power generation limits, Test results on the modified IEEE 30-bus system with various types of the FACTS controller The optimization results clearly indicates that the correct location of the FACTS devices will increase the loadability of the system and GA can be effectively used for this type of optimization.


Author(s):  
Prasanth Duraisamy ◽  
Arul Ponnusamy

The power system loss minimization becomes more important as the need of power generation is more recent days. The loss minimization improves the voltage profile which improves the loadability of the system. In many types of Flexible AC Transmission System (FACTS) devices Static Var Compensators (SVC) are cost vise it is affordable and it improves the system performance with lesser size. Here SVC is optimally placed in a test system of 30 bus system. Genetic algorithm is used to find the optimal results.


Author(s):  
Prasanth Duraisamy ◽  
Arul Ponnusamy

The power system loss minimization becomes more important as the need of power generation is more recent days. The loss minimization improves the voltage profile which improves the loadability of the system. In many types of flexible AC transmission system (FACTS) devices static var compensators (SVC) are cost vise it is affordable and it improves the system performance with lesser size. Here SVC is optimally placed in a test system of 30 bus system. Genetic algorithm is used to find the optimal results.


Sign in / Sign up

Export Citation Format

Share Document