COMPUTATIONAL SIMULATION OF FLUID FLOW OVER A TRIANGULAR STEP USING IMMERSED BOUNDARY METHOD

2013 ◽  
Vol 10 (04) ◽  
pp. 1350016 ◽  
Author(s):  
C. A. SALEEL ◽  
A. SHAIJA ◽  
S. JAYARAJ

Handling of complex geometries with fluid–solid interaction has been one of the exigent issues in computational fluid dynamics (CFD) because most engineering problems have complex geometries with fluid–solid interaction for the purpose. Two different approaches have been developed for the same hitherto: (i) The unstructured grid method and (ii) the immersed boundary method (IBM). This paper details the IBM for the numerical investigation of two-dimensional laminar flow over a backward facing step and various geometrically configured triangular steps in hydro-dynamically developing regions (entrance region) as well in the hydro-dynamically developed regions through a channel at different Reynolds numbers. The present numerical method is rooted in a finite volume approach on a staggered grid in concert with a fractional step method. Geometrical obstructions are treated as an immersed boundary (IB), both momentum forcing and mass source terms are applied on the obstruction to satisfy the no-slip boundary condition and also to satisfy the continuity for the mesh containing the immersed boundary. Initially, numerically obtained velocity profiles and stream line plots for fluid flow over backward facing step is depicted to show its excellent agreement with the published results in various literatures. There after profiles and plots in the channel with triangular steps are also being unveiled with in depth elucidation. Results are presented for different Reynolds numbers.

2021 ◽  
Vol 236 ◽  
pp. 109537
Author(s):  
Zhao-Li Tian ◽  
A-Man Zhang ◽  
Yun-Long Liu ◽  
Shi-Ping Wang

2009 ◽  
Vol 44 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Dedy Zulhidayat Noor ◽  
Ming-Jyh Chern ◽  
Tzyy-Leng Horng

Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Jonatas Borges ◽  
Marcos Lourenço ◽  
Elie Padilla ◽  
Christopher Micallef

The immersed boundary method has attracted considerable interest in the last few years. The method is a computational cheap alternative to represent the boundaries of a geometrically complex body, while using a cartesian mesh, by adding a force term in the momentum equation. The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring, a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated, and relative motion of those bodies may be accomplished at reasonable computational cost. The numerical platform in development has a parallel distributed-memory implementation to solve the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where the diffusive terms are approximated by the central difference method. The temporal discretization is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are second-order accurate. The Velocity-pressure coupling is done using the fractional-step method of two steps. The present work applies the immersed boundary method to simulate a Newtonian laminar flow through a three-dimensional sudden contraction. Results are compared to published literature. Flow patterns upstream and downstream of the contraction region are analysed at various Reynolds number in the range 44 ≤ R e D ≤ 993 for the large tube and 87 ≤ R e D ≤ 1956 for the small tube, considerating a contraction ratio of β = 1 . 97 . Comparison between numerical and experimental velocity profiles has shown good agreement.


Author(s):  
James P. Johnson ◽  
Gianluca Iaccarino ◽  
Kuo-Huey Chen ◽  
Bahram Khalighi

The Immersed-Boundary Method is coupled to an incompressible-flow RANS solver, based on a two-equation turbulence model, to perform unsteady numerical simulations of airflow past the NACA-0012 airfoil for several angles of attack and Reynolds numbers of 5.0×105 and 1.8×106. Qualitative characterizations of the flow in the vicinity of the airfoil are obtained to show the need for locally refined grids to capture the thin boundary layers close to the airfoil leading edges. Quantitative analysis of aerodynamic force coefficients and wall pressure distributions are also reported and compared to experimental results and those from body-fitted grid simulations using the same solver to assess the accuracy and limitations of this approach. The Immersed-Boundary simulations compared well to the experimental and body-fitted results up to the occurrence of separation. After that point, neither computational approach provided satisfactory solutions.


2020 ◽  
Vol 13 (2) ◽  
pp. 118-125
Author(s):  
Mithun Kanchan ◽  
Ranjith Maniyeri

Background: Fluid flow in microchannels is restricted to low Reynolds number regimes and hence inducing chaotic mixing in such devices is a major challenge. Over the years, the Immersed Boundary Method (IBM) has proved its ability in handling complex fluid-structure interaction problems. Objectives: Inspired by recent patents in microchannel mixing devices, we study passive mixing effects by performing two-dimensional numerical simulations of wavy wall in channel flow using IBM. Methods: The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. Fluid variables are described by Eulerian coordinates and solid boundary by Lagrangian coordinates. A four-point Dirac delta function is used to couple both the coordinate variables. A momentum forcing term is added to the governing equation in order to impose the no-slip boundary condition between the wavy wall and fluid interface. Results: Parametric study is carried out to analyze the fluid flow characteristics by varying amplitude and wavelength of wavy wall configurations for different Reynolds number. Conclusion: Configurations of wavy wall microchannels having a higher amplitude and lower wavelengths show optimum results for mixing applications.


Sign in / Sign up

Export Citation Format

Share Document