scholarly journals Development of User Element Routine (UEL) for Cell-Based Smoothed Finite Element Method (CSFEM) in Abaqus

2019 ◽  
Vol 17 (02) ◽  
pp. 1850128 ◽  
Author(s):  
Pramod Y. Kumbhar ◽  
A. Francis ◽  
N. Swaminathan ◽  
R. K. Annabattula ◽  
S. Natarajan

In this paper, we discuss the implementation of a cell-based smoothed finite element method (CSFEM) within the commercial finite element software Abaqus. The salient feature of the CSFEM is that it does not require an explicit form of the derivative of the shape functions and there is no need for isoparametric mapping. This implementation is accomplished by employing the user element subroutine (UEL) feature in Abaqus. The details on the input data format together with the proposed user element subroutine, which forms the core of the finite element analysis are given. A few benchmark problems from linear elastostatics in both two and three dimensions are solved to validate the proposed implementation. The developed UELs and the associated input files can be downloaded from https://github.com/nsundar/SFEM_in_Abaqus .

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Nan Ye ◽  
Chao Su ◽  
Yang Yang

The polygonal scaled boundary finite element method (PSBFEM) is a novel method integrating the standard scaled boundary finite element method (SBFEM) and the polygonal mesh technique. This work discusses developing a PSBFEM framework within the commercial finite element software Abaqus. The PSBFEM is implemented by the User Element Subroutine (UEL) feature of the software. The details on the main procedures to interact with Abaqus, defining the UEL element, and solving the stiffness matrix by the eigenvalue decomposition are present. Moreover, we also develop the preprocessing module and the postprocessing module using the Python script to generate meshes automatically and visualize results. Several benchmark problems from two-dimensional linear elastostatics are solved to validate the proposed implementation. The results show that PSBFEM-UEL has significantly better than FEM convergence and accuracy rate with mesh refinement. The implementation of PSBFEM-UEL can conveniently use arbitrary polygon elements by the polygon/quadtree discretizations in the Abaqus. The developed UEL and the associated input files can be downloaded from https://github.com/hhupde/PSBFEM-Abaqus.


2016 ◽  
Vol 250 ◽  
pp. 163-168
Author(s):  
Ihor Rokach

Accuracy of stress intensity factor (SIF) determination by three types of smooth finite element method (namely, ES-FEM, NS-FEM and α-FEM) has been investigated. Two types of simple benchmark problems (uniaxial tension of the specimens with central and edge cracks) have been considered. SIF values were calculated by virtual crack extension and modified crack closure integral methods on almost uniform meshes. It has been shown that utilizing of ES-FEM and α-FEM significantly improves accuracy of the results compared with the traditional FEM.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Nan Ye ◽  
Chao Su ◽  
Yang Yang

The polygonal scaled boundary finite element method (PSBFEM) is a novel approach integrating the standard scaled boundary finite element method and the polygonal mesh technique. In this work, a user-defined element (UEL) for dynamic analysis based on the PSBFEM is developed in the general finite element software ABAQUS. We present the main procedures of interacting with Abaqus, updating AMATRX and RHS, defining the UEL element, and solving the stiffness and mass matrices through eigenvalue decomposition. Several benchmark problems of free and forced vibration are solved to validate the proposed implementation. The results show that the PSBFEM is more accurate than the FEM with mesh refinement. Moreover, the PSBFEM avoids the occurrence of hanging nodes by constructing a polygonal mesh. Thus, the PSBFEM can choose an appropriate mesh resolution for different structures ensuring accuracy and reducing calculation costs.


2013 ◽  
Vol 10 (04) ◽  
pp. 1350012 ◽  
Author(s):  
V. KUMAR ◽  
R. METHA

We present impact simulations with the Smoothed Finite Element Method (SFEM). Therefore, we develop the SFEM in the context of explicit dynamic applications based on diagonalized mass matrix. Since SFEM is not based on the isoparametric concept and is based on line integration rather than domain integration, it is very promising for events involving large deformations and severe element distortion as they occur in high dynamic events such as impacts. For some benchmark problems, we show that SFEM is superior to standard FEM for impact events. To our best knowledge, this is the first time SFEM is applied in the context of impact analysis based on explicit time integration.


2012 ◽  
Vol 479-481 ◽  
pp. 665-669
Author(s):  
Bao Qin Zhang ◽  
Hai Zhi Wu

This paper points out the practical significance of the finite element analysis of kinetics on the structure of simultaneous effect of static load and sinusoidal load, and according to the theory of finite element method ,the principles and methods of solving problem were studied, and then in the general finite element software of ANSYS ,through a concrete example, the solving process of the problem was achieved. This method could be used to the dynamic analysis on the structures of simultaneous effect of many different frequency sinusoidal load. The applied scope of finite element method must be extended by using this method


2019 ◽  
Vol 13 (1) ◽  
pp. 114-122
Author(s):  
Petros Christou ◽  
Christos Venizelou

Background: Recent research studies conclude that the contribution of the infill walls to the overall lateral strength of frames is significant. The current state of the art includes two main approaches for the idealization of the behavior of the infill walls and their implementation in software. Micro modelling includes the use of the finite element method whereas the macro modelling, includes the use of one-dimensional compressive diagonal strut elements to replace the infill wall and provide the equivalent lateral stiffness. Objective: The aim of this study was to compare various methods for the simulation of the infill walls with the finite element method and propose an alternative approach which makes use of the rigid end offset which is a feature available in most of the finite element software. Methods: A reinforced concrete frame model with an infill wall was created. The model was modified to form combinations of infill wall thicknesses and values of Young’s modulus. The models were analyzed using the finite element method. The results were utilized to develop equations for the calculation of the length of rigid end offsets for the beams and columns of the frame. The rigid end offsets were then used in the analysis to numerically stiffen the frame and simulate an effective lateral strength contribution from the infill wall. Results: The results of the implementation of the rigid end offsets to simulate the contribution of the infill walls to the lateral stiffness of the frame were compared to the results of the results from the finite element analysis. Specifically, the results for the walls normally found in construction (less or equal to 3m in height and with thickness less or equal to 25cm) showed a very good agreement while the remaining results were very close. Conclusion: This work proposes equations for calculation of the length for the rigid end offsets which can be used in the analysis of frames with infill walls. The results show that the utilization of this feature from the structural analysis software in the analysis of frames, results in adequate stiffening of the overall frame, thus, providing an equivalent stiffness which accounts for the presence of the infill walls.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sign in / Sign up

Export Citation Format

Share Document