An Improvement of Probabilistic Feasible Region Method for Reliablity-Based Design Optimization

Author(s):  
Zihao Wu ◽  
Zhenzhong Chen ◽  
Ge Chen ◽  
Xiaoke Li ◽  
Xuehui Gan ◽  
...  

The decoupled methods for reliability-based design optimization (RBDO) problems are efficient and accurate. Sequential optimization and reliability analysis (SORA) method and probabilistic feasible region (PFR) approach are typical decoupled methods. When there are multiple constraints in RBDO problem, PFR method improves the efficiency of solving this problem by establishing the PFR to reduce the number of unnecessary reliability analysis loops. If the constraint boundary is not fixed in RBDO problem, PFR method may fail to solve and give the wrong result. Based on PFR method, this paper proposed an improvement of PFR method to solve the unfixed constraint boundary problems. The improvement of PFR method may not be efficient as the PFR method in solving the common RBDO problems. But, the improvement of PFR method can solve the RBDO problem with unfixed constraint boundary and has better adaptability. Three applications, a nonlinear mathematical problem, a highly nonlinear mathematical problem and an engineering design problem, are presented to illustrate the accuracy of the improvement of PFR method.

Author(s):  
Kyung K. Choi ◽  
Byeng D. Youn

Deterministic optimum designs that are obtained without consideration of uncertainty could lead to unreliable designs, which call for a reliability approach to design optimization, using a Reliability-Based Design Optimization (RBDO) method. A typical RBDO process iteratively carries out a design optimization in an original random space (X-space) and reliability analysis in an independent and standard normal random space (U-space). This process requires numerous nonlinear mapping between X- and U-spaces for a various probability distributions. Therefore, the nonlinearity of RBDO problem will depend on the type of distribution of random parameters, since a transformation between X- and U-spaces introduces additional nonlinearity to reliability-based performance measures evaluated during the RBDO process. Evaluation of probabilistic constraints in RBDO can be carried out in two different ways: the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). Different reliability analysis approaches employed in RIA and PMA result in different behaviors of nonlinearity of RIA and PMA in the RBDO process. In this paper, it is shown that RIA becomes much more difficult to solve for non-normally distributed random parameters because of highly nonlinear transformations involved. However, PMA is rather independent of probability distributions because of little involvement of the nonlinear transformation.


Author(s):  
Xiaoping Du

Reliability-based design optimization is much more computationally expensive than deterministic design optimization. To alleviate the computational demand, the First Order Reliability Method (FORM) is usually used in reliability-based design. Since FORM requires a nonlinear transformation from non-normal random variables to normal random variables, the nonlinearity of a constraint function may increase. As a result, the transformation may lead to a large error in reliability calculation. In order to improve accuracy, a new reliability-based design method with Saddlepoint Approximation is proposed in this work. The strategy of sequential optimization and reliability assessment is employed where the reliability analysis is decoupled from deterministic optimization. The accurate First Order Saddlepoint method is used for reliability analysis in the original random space without any transformation, and the chance of increasing nonlinearity of a constraint function is therefore eliminated. The overall reliability-based design is conducted in a sequence of cycles of deterministic optimization and reliability analysis. In each cycle, the percentile value of the constraint function corresponding to the required reliability is calculated with the Saddlepoint Approximation at the optimal point of the deterministic optimization. Then the reliability analysis results are used to formulate a new deterministic optimization model for the next cycle. The solution process converges within a few cycles. The demonstrative examples show that the proposed method is more accurate and efficient than the reliability-based design with FORM.


2003 ◽  
Vol 126 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Byeng D. Youn ◽  
Kyung K. Choi

Because deterministic optimum designs obtained without taking uncertainty into account could lead to unreliable designs, a reliability-based approach to design optimization is preferable using a Reliability-Based Design Optimization (RBDO) method. A typical RBDO process iteratively carries out a design optimization in an original random space (X-space) and a reliability analysis in an independent and standard normal random space (U-space). This process requires numerous nonlinear mappings between X- and U-spaces for various probability distributions. Therefore, the nonlinearity of the RBDO problem will depend on the type of distribution of random parameters, since a transformation between X- and U-spaces introduces additional nonlinearity into the reliability-based performance measures evaluated during the RBDO process. The evaluation of probabilistic constraints in RBDO can be carried out in two ways: using either the Reliability Index Approach (RIA), or the Performance Measure Approach (PMA). Different reliability analysis approaches employed in RIA and PMA result in different behaviors of nonlinearity for RIA and PMA in the RBDO process. In this paper, it is shown that RIA becomes much more difficult to solve for non-normally distributed random parameters because of the highly nonlinear transformations that are involved. However, PMA is rather independent of probability distributions because it only has a small involvement with a nonlinear transformation.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Meng Li ◽  
Mohammadkazem Sadoughi ◽  
Chao Hu ◽  
Zhen Hu ◽  
Amin Toghi Eshghi ◽  
...  

Reliability-based design optimization (RBDO) aims at optimizing the design of an engineered system to minimize the design cost while satisfying reliability requirements. However, it is challenging to perform RBDO under high-dimensional uncertainty due to the often prohibitive computational burden. In this paper, we address this challenge by leveraging a recently developed method for reliability analysis under high-dimensional uncertainty. The method is termed high-dimensional reliability analysis (HDRA). The HDRA method optimally combines the strengths of univariate dimension reduction (UDR) and kriging-based reliability analysis to achieve satisfactory accuracy with an affordable computational cost for HDRA problems. In this paper, we improve the computational efficiency of high-dimensional RBDO by pursuing two new strategies: (i) a two-stage surrogate modeling strategy is adopted to first locate a highly probable region of the optimum design and then locally refine the accuracy of the surrogates in this region; and (ii) newly selected samples are updated for all the constraints during the sequential sampling process in HDRA. The results of two mathematical examples and one real-world engineering example suggest that the proposed HDRA-based RBDO (RBDO-HDRA) method is capable of solving high-dimensional RBDO problems with higher accuracy and comparable efficiency than the UDR-based RBDO (RBDO-UDR) and ordinary kriging-based RBDO (RBDO-kriging) methods.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879333 ◽  
Author(s):  
Zhiliang Huang ◽  
Tongguang Yang ◽  
Fangyi Li

Conventional decoupling approaches usually employ first-order reliability method to deal with probabilistic constraints in a reliability-based design optimization problem. In first-order reliability method, constraint functions are transformed into a standard normal space. Extra non-linearity introduced by the non-normal-to-normal transformation may increase the error in reliability analysis and then result in the reliability-based design optimization analysis with insufficient accuracy. In this article, a decoupling approach is proposed to provide an alternative tool for the reliability-based design optimization problems. To improve accuracy, the reliability analysis is performed by first-order asymptotic integration method without any extra non-linearity transformation. To achieve high efficiency, an approximate technique of reliability analysis is given to avoid calculating time-consuming performance function. Two numerical examples and an application of practical laptop structural design are presented to validate the effectiveness of the proposed approach.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850018 ◽  
Author(s):  
Bao Quoc Doan ◽  
Guiping Liu ◽  
Can Xu ◽  
Minh Quang Chau

Reliability-based design optimization (RBDO) involves evaluation of probabilistic constraints which can be time-consuming in engineering structural design problems. In this paper, an efficient approach combined sequential optimization with approximate models is suggested for RBDO. The radial basis functions and Latin hypercube sampling are used to construct approximate models of the probabilistic constraints. Then, a sequential optimization with approximate models is carried out by the sequential optimization and reliability assessment method which includes a serial of cycles of deterministic optimization and reliability assessment. Three numerical examples are presented to demonstrate the efficiency of the proposed approach.


Author(s):  
Hyunkyoo Cho ◽  
K. K. Choi ◽  
David Lamb

An accurate input probabilistic model is necessary to obtain a trustworthy result in the reliability analysis and the reliability-based design optimization (RBDO). However, the accurate input probabilistic model is not always available. Very often only insufficient input data are available in practical engineering problems. When only the limited input data are provided, uncertainty is induced in the input probabilistic model and this uncertainty propagates to the reliability output which is defined as the probability of failure. Then, the confidence level of the reliability output will decrease. To resolve this problem, the reliability output is considered to have a probability distribution in this paper. The probability of the reliability output is obtained as a combination of consecutive conditional probabilities of input distribution type and parameters using Bayesian approach. The conditional probabilities that are obtained under certain assumptions and Monte Carlo simulation (MCS) method is used to calculate the probability of the reliability output. Using the probability of the reliability output as constraint, a confidence-based RBDO (C-RBDO) problem is formulated. In the new probabilistic constraint of the C-RBDO formulation, two threshold values of the target reliability output and the target confidence level are used. For effective C-RBDO process, the design sensitivity of the new probabilistic constraint is derived. The C-RBDO is performed for a mathematical problem with different numbers of input data and the result shows that C-RBDO optimum designs incorporate appropriate conservativeness according to the given input data.


Sign in / Sign up

Export Citation Format

Share Document