GENERAL EULER TOP SYSTEM AND ITS LAX REPRESENTATION

2011 ◽  
Vol 08 (05) ◽  
pp. 937-944 ◽  
Author(s):  
GHEORGHE IVAN ◽  
MIHAI IVAN
Keyword(s):  

The main purpose of this paper is to give the Lax representation of the general Euler top system.

1998 ◽  
Vol 426 (1-2) ◽  
pp. 57-63 ◽  
Author(s):  
J.C. Brunelli ◽  
Ashok Das
Keyword(s):  

2001 ◽  
Vol 13 (04) ◽  
pp. 529-543 ◽  
Author(s):  
J. C. BRUNELLI ◽  
M. GÜRSES ◽  
K. ZHELTUKHIN

We give the Lax representations for the elliptic, hyperbolic and homogeneous second order Monge–Ampère equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge–Ampère equations. Local as well nonlocal conserved densities are obtained.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


2020 ◽  
Vol 16 (4) ◽  
pp. 637-650
Author(s):  
P. Guha ◽  
◽  
S. Garai ◽  
A.G. Choudhury ◽  
◽  
...  

Recently Sinelshchikov et al. [1] formulated a Lax representation for a family of nonautonomous second-order differential equations. In this paper we extend their result and obtain the Lax pair and the associated first integral of a non-autonomous version of the Levinson – Smith equation. In addition, we have obtained Lax pairs and first integrals for several equations of the Painlevé – Gambier list, namely, the autonomous equations numbered XII, XVII, XVIII, XIX, XXI, XXII, XXIII, XXIX, XXXII, XXXVII, XLI, XLIII, as well as the non-autonomous equations Nos. XV and XVI in Ince’s book.


Sign in / Sign up

Export Citation Format

Share Document