scholarly journals ARITHMETIC OF POTTS MODEL HYPERSURFACES

2013 ◽  
Vol 10 (04) ◽  
pp. 1350005 ◽  
Author(s):  
MATILDE MARCOLLI ◽  
JESSICA SU

We consider Potts model hypersurfaces defined by the multivariate Tutte polynomial of graphs (Potts model partition function). We focus on the behavior of the number of points over finite fields for these hypersurfaces, in comparison with the graph hypersurfaces of perturbative quantum field theory defined by the Kirchhoff graph polynomial. We give a very simple example of the failure of the "fibration condition" in the dependence of the Grothendieck class on the number of spin states and of the polynomial countability condition for these Potts model hypersurfaces. We then show that a period computation, formally similar to the parametric Feynman integrals of quantum field theory, arises by considering certain thermodynamic averages. One can show that these evaluate to combinations of multiple zeta values for Potts models on polygon polymer chains, while silicate tetrahedral chains provide a candidate for a possible occurrence of non-mixed Tate periods.

2002 ◽  
Vol 31 (3) ◽  
pp. 127-148 ◽  
Author(s):  
Uwe Müller ◽  
Christian Schubert

We establish a novel representation of arbitrary Euler-Zagier sums in terms of weighted vacuum graphs. This representation uses a toy quantum field theory with infinitely many propagators and interaction vertices. The propagators involve Bernoulli polynomials and Clausen functions to arbitrary orders. The Feynman integrals of this model can be decomposed in terms of a vertex algebra whose structure we investigate. We derive a large class of relations between multiple zeta values, of arbitrary lengths and weights, using only a certain set of graphical manipulations on Feynman diagrams. Further uses and possible generalisations of the model are pointed out.


Author(s):  
S. A. Fulling ◽  
A. G. S. Landulfo ◽  
G. E. A. Matsas

Classical field theory is about fields and how they behave in space–time. Quantum field theory, in practice, usually seems to be about particles and how they scatter. Nevertheless, classical fields must emerge from quantum field theory in appropriate limits, and Michael Duff showed how this happens for the Schwarzschild solution in perturbative quantum gravity. In a series of papers, we and others have shown how classical radiation from an accelerated charge emerges from quantum field theory when the Unruh thermal effect is taken into account. Here, we sharpen those conclusions by showing that, even at finite times, the quantum picture is meaningful and is in close agreement with the classical picture.


2019 ◽  
Vol 31 (06) ◽  
pp. 1950017
Author(s):  
Nguyen Viet Dang ◽  
Estanislao Herscovich

In this paper, we provide a simple pedagogical proof of the existence of covariant renormalizations in Euclidean perturbative quantum field theory on closed Riemannian manifolds, following the Epstein–Glaser philosophy. We rely on a local method that allows us to extend a distribution defined on an open set [Formula: see text] to the whole manifold [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document