classical picture
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 4)

Nature ◽  
2022 ◽  
Vol 601 (7891) ◽  
pp. 49-52
Author(s):  
T.-C. Ching ◽  
D. Li ◽  
C. Heiles ◽  
Z.-Y. Li ◽  
L. Qian ◽  
...  

AbstractMagnetic fields have an important role in the evolution of interstellar medium and star formation1,2. As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas3. Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H I narrow self-absorption (HINSA)4,5 towards L15446,7—a well-studied prototypical prestellar core in an early transition between starless and protostellar phases8–10 characterized by a high central number density11 and a low central temperature12. A combined analysis of the Zeeman measurements of quasar H I absorption, H I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes13,14.


2021 ◽  
Author(s):  
Lital Shani-Zerbib ◽  
Liora Garion ◽  
Yonit Maroudas-Sacks ◽  
Erez Braun ◽  
Kinneret Keren

The emergence and stabilization of a body axis is a major step in animal morphogenesis, determining the symmetry of the body plan as well as its polarity. To advance our understanding of the emergence of body-axis polarity we study regenerating Hydra. Axis polarity is strongly memorized in Hydra regeneration even in small tissue segments. What type of processes confer this memory? To gain insight into the emerging polarity, we utilize frustrating initial conditions by studying regenerating tissue strips which fold into hollow spheroids by adhering their distal ends, of opposite original polarities. Despite the convoluted folding process and the tissue rearrangements during regeneration, these tissue strips develop a new organizer in a reproducible location preserving the original polarity and yielding an ordered body plan. These observations suggest that the integration of mechanical and biochemical processes supported by their mutual feedback attracts the tissue dynamics towards a well-defined developmental trajectory biased by weak inherited cues from the parent animal. Hydra thus provide an example of dynamic canalization in which the dynamic rules themselves are inherited, in contrast to the classical picture where a detailed developmental trajectory is pre-determined.


2021 ◽  
Vol 9 (10) ◽  
pp. 2542-2549
Author(s):  
Alisha Dhaaniya ◽  
Prateek Madan ◽  
Ravi Sharma ◽  
N. R. Singh

Madhumeha is a clinical entity described in Ayurveda under the types of Vataja Prameha. It is caused by the ag- gravation of Vata, the patient passes excess urine, which is sweet, astringent in taste, slightly turbid and pale in colour. Madhumeha can be correlated with an identical disease delineated in modern medical sciences as Diabetes Mellitus. DM has turned out to be the considerable silent killer today within the world. In Ayurveda it is de- scribed in Vataja Pramehas and can be managed conservatively with Modifications in diet, exercise, medication and lifestyle are all important factors in the successful treatment of type 2 diabetes and are assimilated into the ancient Indian medicinal practice of Ayurveda. Drugs like Chandraprabha (Curcuma zedoaria), Gudmar (Gymnema sylvestre), Asana (Pterocarpus marsupium), Musta (Cyperus rotundus), Shilajit (Purified Bitumen), Khadir (Acacia catechu), Vacha (Acorus calamu), Guduchi (Tinospora cordifolia), Jambu (Syzygium cumini) are effective in controlling hyperglycemia. This study is consists of a brief classical picture of Madhumeha and Type 2 Diabetes Mellitus along with its burden on society and classical management. Keywords: Chandraprabha, Diabetes Mellitus, Madhumeha, Prameha, Vataja.


Author(s):  
R. Poenaru ◽  
A. A. Raduta

The wobbling spectrum of [Formula: see text]Lu is described through a novel approach, starting from a triaxial rotor model within a semi-classical picture, and obtaining a new set of equations for all four rotational bands that have wobbling character. Redefining the band structure in the present model is done by adopting the concepts of Signature Partner Bands and Parity Partner Bands. Indeed, describing a wobbling spectrum in an even–odd nucleus through signature and parity quantum numbers is an inedited interpretation of the triaxial super-deformed bands.


2021 ◽  
Author(s):  
Naleli Jubert Matjelo

Abstract In this paper, we consider modeling measurement as part of the overall system dynamics in a way that allows a dynamic interaction between the target system and the measuring system/device. For example, the interaction between the target system and the measuring system can be modeled as a form of collision, scattering process, or some coupling between the two systems depending on how they interact with each other. We show that following this line of thinking about the two systems as intertwined/coupled, in the classical picture, naturally leads to the general dynamics analogous to Schrodinger's wave dynamics.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aaron D. Kaplan ◽  
Stewart J. Clark ◽  
Kieron Burke ◽  
John P. Perdew

AbstractClassical turning surfaces of Kohn–Sham potentials separate classically allowed regions (CARs) from classically forbidden regions (CFRs). They are useful for understanding many chemical properties of molecules but need not exist in solids, where the density never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many semiconductors have no CFR at equilibrium, a key finding for density functional construction. Nonetheless, a strong correlation with insulating behavior can still be inferred. Moreover, equilibrium bond lengths for all cases can be estimated from the bond type and the sum of the classical turning radii of the free atoms or ions.


Author(s):  
S. A. Fulling ◽  
A. G. S. Landulfo ◽  
G. E. A. Matsas

Classical field theory is about fields and how they behave in space–time. Quantum field theory, in practice, usually seems to be about particles and how they scatter. Nevertheless, classical fields must emerge from quantum field theory in appropriate limits, and Michael Duff showed how this happens for the Schwarzschild solution in perturbative quantum gravity. In a series of papers, we and others have shown how classical radiation from an accelerated charge emerges from quantum field theory when the Unruh thermal effect is taken into account. Here, we sharpen those conclusions by showing that, even at finite times, the quantum picture is meaningful and is in close agreement with the classical picture.


2020 ◽  
Vol 6 (25) ◽  
pp. eabb1122 ◽  
Author(s):  
Jingxu Zheng ◽  
Jiefu Yin ◽  
Duhan Zhang ◽  
Gaojin Li ◽  
David C. Bock ◽  
...  

The propensity of metal anodes of contemporary interest (e.g., Li, Al, Na, and Zn) to form non-planar, dendritic morphologies during battery charging is a fundamental barrier to achievement of full reversibility. We experimentally investigate the origins of dendritic electrodeposition of Zn, Cu, and Li in a three-electrode electrochemical cell bounded at one end by a rotating disc electrode. We find that the classical picture of ion depletion–induced growth of dendrites is valid in dilute electrolytes but is essentially irrelevant in the concentrated (≥1 M) electrolytes typically used in rechargeable batteries. Using Zn as an example, we find that ion depletion at the mass transport limit may be overcome by spontaneous reorientation of Zn crystallites from orientations parallel to the electrode surface to dominantly homeotropic orientations, which appear to facilitate contact with cations outside the depletion layer. This chemotaxis-like process causes obvious texturing and increases the porosity of metal electrodeposits.


Author(s):  
Kosuke Ishikawa ◽  
Morikawa Okuto ◽  
Kazuya Shibata ◽  
Hiroshi Suzuki

Abstract By employing the $1/N$ expansion, we compute the vacuum energy $E(\delta\epsilon)$ of the two-dimensional supersymmetric (SUSY) $\mathbb{C}P^{N-1}$ model on $\mathbb{R}\times S^1$ with $\mathbb{Z}_N$ twisted boundary conditions to the second order in a SUSY-breaking parameter $\delta\epsilon$. This quantity was vigorously studied recently by Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter $\delta\epsilon$ receives renormalization and, after this renormalization, the vacuum energy becomes ultraviolet finite. To the next-to-leading order of the $1/N$ expansion, we find that the vacuum energy normalized by the radius of the $S^1$, $R$, $RE(\delta\epsilon)$ behaves as inverse powers of $\Lambda R$ for $\Lambda R$ small, where $\Lambda$ is the dynamical scale. Since $\Lambda$ is related to the renormalized ’t Hooft coupling $\lambda_R$ as $\Lambda\sim e^{-2\pi/\lambda_R}$, to the order of the $1/N$ expansion we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak coupling expansion in $\lambda_R$.


Sign in / Sign up

Export Citation Format

Share Document