THE HOMOGENEOUS LIFT TO THE (1, 1)-TENSOR BUNDLE OF A RIEMANNIAN METRIC

2013 ◽  
Vol 10 (04) ◽  
pp. 1350006 ◽  
Author(s):  
ESMAEIL PEYGHAN ◽  
HASSAN NASRABADI ◽  
AKBAR TAYEBI

By using a Riemannian metric on a differentiable manifold, the homogeneous lift metric is introduced on the (1, 1)-tensor bundle of the Riemannian manifold. Some geometric objects related to this metric, such as the Levi-Civita connection, Riemannian curvature tensor and sectional curvature are calculated. Also, a para-Nordenian structure on the (1, 1)-tensor bundle with this metric is constructed and interesting properties of this structure are studied.

2002 ◽  
Vol 45 (2) ◽  
pp. 232-246 ◽  
Author(s):  
Min Ji ◽  
Zhongmin Shen

AbstractThe geometry of indicatrices is the foundation of Minkowski geometry. A strongly convex indicatrix in a vector space is a strongly convex hypersurface. It admits a Riemannian metric and has a distinguished invariant—(Cartan) torsion. We prove the existence of non-trivial strongly convex indicatrices with vanishing mean torsion and discuss the relationship between the mean torsion and the Riemannian curvature tensor for indicatrices of Randers type.


2018 ◽  
Vol 9 (3) ◽  
pp. 159-165
Author(s):  
Krishanu Mandal ◽  
Uday Chand De

AbstractThe purpose of this paper is to study Ricci semisymmetric paracontact metric manifolds satisfying{\nabla_{\xi}h=0}and such that the sectional curvature of the plane section containing ξ equals a non-zero constantc. Also, we study paracontact metric manifolds satisfying the curvature condition{Q\cdot R=0}, whereQandRare the Ricci operator and the Riemannian curvature tensor, respectively, and second order symmetric parallel tensors in paracontact metric manifolds under the same conditions. Several consequences of these results are discussed.


Author(s):  
Rakesh Kumar ◽  
Rachna Rani ◽  
R. K. Nagaich

We obtain some basic results for Riemannian curvature tensor of (ε)-Sasakian manifolds and then establish equivalent relations amongφ-sectional curvature, totally real sectional curvature, and totally real bisectional curvature for (ε)-Sasakian manifolds.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lakehal Belarbi ◽  
Hichem Elhendi

PurposeLet (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, the authors introduce a new class of natural metrics denoted by gf and called gradient Sasaki metric on the tangent bundle TM. The authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature, scalar and sectional curvatures.Design/methodology/approachIn this paper the authors introduce a new class of natural metrics called gradient Sasaki metric on tangent bundle.FindingsThe authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature scalar and sectional curvatures.Originality/valueThe authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature scalar and sectional curvatures.


2020 ◽  
pp. 117-120
Author(s):  
E.D. Rodionov ◽  
O.P. Khromova

One of the important problems of Riemannian geometry is the problem of establishing connections between curvature and the topology of a Riemannian manifold, and, in particular, the influence of the sign of sectional curvature on the topological structure of a Riemannian manifold. Of particular importance in these studies is the question of the influence of d-pinching of Riemannian metrics of positive sectional curvature on the geometric and topological structure of the Riemannian manifold. This question is most studied for the homogeneous Riemannian case. In this direction, the classification of homogeneous Riemannian manifolds of positive sectional curvature, obtained by M. Berger, N. Wallach, L. Bergeri, as well as a number of results on d- pinching of homogeneous Riemannian metrics of positive sectional curvature, is well known. In this paper, we investigate Riemannian manifolds with metric connection being a connection with vectorial torsion. The Levi-Civita connection falls into this class of connections. Although the curvature tensor of these connections does not possess the symmetries of the Levi-Civita connection curvature tensor, it seems possible to determine sectional curvature. This paper studies the d-pinch function of the sectional curvature of a compact connected Lie group G with a biinvariant Riemannian metric and a connection with vectorial torsion. It is proved that it takes the values d(||V ||)∈(0,1].


2020 ◽  
pp. 124-127
Author(s):  
E.D. Rodionov ◽  
V.V. Slavsky ◽  
O.P. Khromova

Papers of many mathematicians are devoted to the study of semisymmetric connections or metric connections with vector torsion on Riemannian manifolds. This type of connectivity is one of the three main types discovered by E. Cartan and finds its application in modern physics, geometry, and topology of manifolds. Geodesic lines and the curvature tensor of a given connection were studied by I. Agricola, K. Yano, and other mathematicians. In particular, K. Yano proved an important theorem on the connection of conformal deformations and metric connections with vector torsion. Namely: a Riemannian manifold admits a metric connection with vector torsion and the curvature tensor being equal to zero if and only if it is conformally flat. Although the curvature tensor of a hemisymmetric connection has a smaller number of symmetries compared to the Levi-Civita connection, it is still possible to define the concept of sectional curvature in this case. The question naturally arises about the difference between the sectional curvature of a semisymmetric connection and the sectional curvature of a Levi-Civita connection.This paper is devoted to the study of this issue, and the authors find the necessary and sufficient conditions for the sectional curvature of the semisymmetric connection to coincide with the sectional curvature of the Levi-Civita connection. Non-trivial examples of hemisymmetric connections are constructed when possible.


Author(s):  
Koji Matsumoto

In [4] M. Prvanovic considered several curvaturelike tensors defined for Hermitian manifolds. Developing her ideas in [3], we defined in an almost contact Riemannian manifold another new curvaturelike tensor field, which is called a contact holomorphic Riemannian curvature tensor or briefly (CHR)3-curvature tensor. Then, we mainly researched (CHR)3-curvature tensor in a Sasakian manifold. Also we proved, that a conformally (CHR)3-flat Sasakian manifold does not exist. In the present paper, we consider this tensor field in a trans-Sasakian manifold. We calculate the (CHR)3-curvature tensor in a trans-Sasakian manifold. Also, the (CHR)3-Ricci tensor ρ3  and the (CHR)3-scalar curvature τ3  in a trans-Sasakian manifold have been obtained. Moreover, we define the notion of the (CHR)3-flatness in an almost contact Riemannian manifold. Then, we consider this notion in a trans-Sasakian manifold and determine the curvature tensor, the Ricci tensor and the scalar curvature. We proved that a (CHR)3-flat trans-Sasakian manifold is a generalized   ɳ-Einstein manifold. Finally, we obtain the expression of the curvature tensor with respect to the Riemannian metric g of a trans-Sasakian manifold, if the latter is (CHR)3-flat.


Author(s):  
D. G. Prakasha ◽  
Kakasab Mirji

The paper deals with the study of $\mathcal{M}$-projective curvature tensor on $(k, \mu)$-contact metric manifolds. We classify non-Sasakian $(k, \mu)$-contact metric manifold satisfying the conditions $R(\xi, X)\cdot \mathcal{M} = 0$ and $\mathcal{M}(\xi, X)\cdot S =0$, where $R$ and $S$ are the Riemannian curvature tensor and the Ricci tensor, respectively. Finally, we prove that a $(k, \mu)$-contact metric manifold with vanishing extended $\mathcal{M}$-projective curvature tensor $\mathcal{M}^{e}$ is a Sasakian manifold.


1985 ◽  
Vol 97 ◽  
pp. 173-192 ◽  
Author(s):  
Takao Yamaguchi

The study of finiteness for Riemannian manifolds, which has been done originally by J. Cheeger [5] and A. Weinstein [13], is to investigate what bounds on the sizes of geometrical quantities imply finiteness of topological types, —e.g. homotopy types, homeomorphism or diffeomorphism classes-— of manifolds admitting metrics which satisfy the bounds. For a Riemannian manifold M we denote by RM and KM respectively the curvature tensor and the sectional curvature, by Vol (M) the volume, and by diam(M) the diameter.


Sign in / Sign up

Export Citation Format

Share Document