Approximate Hitchin–Kobayashi correspondence for Higgs G-bundles

2014 ◽  
Vol 11 (07) ◽  
pp. 1460015 ◽  
Author(s):  
Ugo Bruzzo ◽  
Beatriz Graña Otero

We announce a result about the extension of the Hitchin–Kobayashi correspondence to principal Higgs bundles. A principal Higgs bundle on a compact Kähler manifold, with structure group a connected linear algebraic reductive group, is semistable if and only if it admits an approximate Hermitian–Yang–Mills structure.

2020 ◽  
Vol 17 (13) ◽  
pp. 2050200
Author(s):  
Sergio A. H. Cardona ◽  
Claudio Meneses

We define a functional [Formula: see text] for the space of Hermitian metrics on an arbitrary Higgs bundle over a compact Kähler manifold, as a natural generalization of the mean curvature energy functional of Kobayashi for holomorphic vector bundles, and study some of its basic properties. We show that [Formula: see text] is bounded from below by a nonnegative constant depending on invariants of the Higgs bundle and the Kähler manifold, and that when achieved, its absolute minima are Hermite–Yang–Mills metrics. We derive a formula relating [Formula: see text] and another functional [Formula: see text], closely related to the Yang–Mills–Higgs functional, which can be thought of as an extension of a formula of Kobayashi for holomorphic vector bundles to the Higgs bundles setting. Finally, using 1-parameter families in the space of Hermitian metrics on a Higgs bundle, we compute the first variation of [Formula: see text], which is expressed as a certain [Formula: see text]-Hermitian inner product. It follows that a Hermitian metric on a Higgs bundle is a critical point of [Formula: see text] if and only if the corresponding Hitchin–Simpson mean curvature is parallel with respect to the Hitchin–Simpson connection.


1995 ◽  
Vol 10 (30) ◽  
pp. 4325-4357 ◽  
Author(s):  
A. JOHANSEN

It is shown that D=4N=1 SUSY Yang-Mills theory with an appropriate supermultiplet of matter can be twisted on a compact Kähler manifold. The conditions for cancellation of anomalies of BRST charge are found. The twisted theory has an appropriate BRST charge. We find a nontrivial set of physical operators defined as classes of the cohomology of this BRST operator. We prove that the physical correlators are independent of the external Kähler metric up to a power of a ratio of two Ray-Singer torsions for the Dolbeault cohomology complex on a Kähler manifold. The correlators of local physical operators turn out to be independent of antiholomorphic coordinates defined with a complex structure on the Kähler manifold. However, a dependence of the correlators on holomorphic coordinates can still remain. For a hyper-Kähler metric the physical correlators turn out to be independent of all coordinates of insertions of local physical operators.


2009 ◽  
Vol 20 (05) ◽  
pp. 541-556 ◽  
Author(s):  
INDRANIL BISWAS ◽  
GEORG SCHUMACHER

We establish a Kobayashi–Hitchin correspondence for the stable Higgs sheaves on a compact Kähler manifold. Using it, we also obtain a Kobayashi–Hitchin correspondence for the stable Higgs G-sheaves, where G is any complex reductive linear algebraic group.


Author(s):  
Duc-Viet Vu

AbstractLet X be a compact Kähler manifold. Let $$T_1, \ldots , T_m$$ T 1 , … , T m be closed positive currents of bi-degree (1, 1) on X and T an arbitrary closed positive current on X. We introduce the non-pluripolar product relative to T of $$T_1, \ldots , T_m$$ T 1 , … , T m . We recover the well-known non-pluripolar product of $$T_1, \ldots , T_m$$ T 1 , … , T m when T is the current of integration along X. Our main results are a monotonicity property of relative non-pluripolar products, a necessary condition for currents to be of relative full mass intersection in terms of Lelong numbers, and the convexity of weighted classes of currents of relative full mass intersection. The former two results are new even when T is the current of integration along X.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Max Hübner

Abstract M-theory on local G2-manifolds engineers 4d minimally supersymmetric gauge theories. We consider ALE-fibered G2-manifolds and study the 4d physics from the view point of a partially twisted 7d supersymmetric Yang-Mills theory and its Higgs bundle. Euclidean M2-brane instantons descend to non-perturbative effects of the 7d supersymmetric Yang-Mills theory, which are found to be in one to one correspondence with the instantons of a colored supersymmetric quantum mechanics. We compute the contributions of M2-brane instantons to the 4d superpotential in the effective 7d description via localization in the colored quantum mechanics. Further we consider non-split Higgs bundles and analyze their 4d spectrum.


2006 ◽  
Vol 17 (01) ◽  
pp. 35-43 ◽  
Author(s):  
MARCO BRUNELLA

We prove that the canonical bundle of a foliation by curves on a compact Kähler manifold is pseudoeffective, unless the foliation is a (special) foliation by rational curves.


Author(s):  
Stefan Schreieder

Abstract A conjecture of Kotschick predicts that a compact Kähler manifold $X$ fibres smoothly over the circle if and only if it admits a holomorphic one-form without zeros. In this paper we develop an approach to this conjecture and verify it in dimension two. In a joint paper with Hao [ 10], we use our approach to prove Kotschick’s conjecture for smooth projective three-folds.


1951 ◽  
Vol 47 (3) ◽  
pp. 504-517 ◽  
Author(s):  
W. V. D. Hodge

While a number of special properties of differential forms on a Kähler manifold have been mentioned in the literature on complex manifolds, no systematic account has yet been given of the theory of differential forms on a compact Kähler manifold. The purpose of this paper is to show how a general theory of these forms can be developed. It follows the general plan of de Rham's paper (2) on differential forms on real manifolds, and frequent use will be made of results contained in that paper. For convenience we begin by giving a brief account of the theory of complex tensors on a complex manifold, and of the differential geometry associated with a Hermitian, and in particular a Kählerian, metric on such a manifold.


Author(s):  
Yeping Zhang

Abstract Bershadsky, Cecotti, Ooguri, and Vafa constructed a real-valued invariant for Calabi–Yau manifolds, which is called the BCOV invariant. In this paper, we consider a pair $(X,Y)$, where $X$ is a compact Kähler manifold and $Y\in \big |K_X^m\big |$ with $m\in{\mathbb{Z}}\backslash \{0,-1\}$. We extend the BCOV invariant to such pairs. If $m=-2$ and $X$ is a rigid del Pezzo surface, the extended BCOV invariant is equivalent to Yoshikawa’s equivariant BCOV invariant. If $m=1$, the extended BCOV invariant is well behaved under blowup. It was conjectured that birational Calabi–Yau three-folds have the same BCOV invariant. As an application of our extended BCOV invariant, we show that this conjecture holds for Atiyah flops.


Sign in / Sign up

Export Citation Format

Share Document