Existence of conformal vector fields of Bianchi type I space-times in f(R) gravity

2020 ◽  
Vol 17 (08) ◽  
pp. 2050113 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
S. Jamal ◽  
Muhammad Ramzan

In this paper, Bianchi type I space-times in the [Formula: see text] theory of gravity are classified via conformal vector fields using algebraic and direct integration techniques. In this classification, we show that the conformal vector fields are of dimension four, five, six or fifteen. Additionally, we found that non-conformally flat Bianchi type I space-times admit conformal vector fields of dimension four, five or six. In the case of conformally flat or flat space-times, the dimension of the conformal vector fields is fifteen.

Author(s):  
Suhail Khan ◽  
Maria Bukhari ◽  
Ali H. Alkhaldi ◽  
Akram Ali

This paper aims to investigate Conformal Vector Fields (CVFs) of Bianchi type-I spacetimes. A set of 10-coupled Partial Differential Equations (PDEs) is obtained from the conformal Killing equations. These equations are solved by using direct integration techniques to explore the components of CVFs. Utilizing these components, we get a system of three integrability conditions. Finally, we achieve CVFs along with conformal factors for unique possibilities of unknown metric functions from the solution of these conditions. From our results, it is examined that Bianchi type-I spacetimes admit five or fifteen CVFs for specific choices of metric functions.


2010 ◽  
Vol 25 (01) ◽  
pp. 55-61 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify Bianchi type I spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields is 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 10 Killing vector fields, the spacetime becomes Minkowski and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in the general relativity.


2020 ◽  
Vol 17 (14) ◽  
pp. 2050218
Author(s):  
Murtaza Ali ◽  
Fiaz Hussain ◽  
Ghulam Shabbir ◽  
S. F. Hussain ◽  
Muhammad Ramzan

The aim of this paper is to classify non-conformally flat static plane symmetric (SPS) perfect fluid solutions via proper conformal vector fields (CVFs) in [Formula: see text] gravity. For this purpose, first we explore some SPS perfect fluid solutions of the Einstein field equations (EFEs) in [Formula: see text] gravity. Second, we utilize these solutions to find proper CVFs. In this study, we found 16 cases. A detailed study of each case reveals that in three of these cases, the space-times admit proper CVFs whereas in the rest of the cases, either the space-times become conformally flat or they admit proper homothetic vector fields (HVFs) or Killing vector fields (KVFs). The dimension of CVFs for non-conformally flat space-times in [Formula: see text] gravity is four, five or six.


2020 ◽  
Vol 17 (06) ◽  
pp. 2050086 ◽  
Author(s):  
Fiaz Hussain ◽  
Ghulam Shabbir ◽  
M. Ramzan ◽  
Shabeela Malik ◽  
F. M. Mahomed

In the [Formula: see text] theory of gravity, we classify static plane symmetric perfect fluid space-times via proper conformal vector fields (CVFs) using algebraic and direct integration approaches. During this classification, we found eight cases. Studying each case in detail, we found that the dimensions of CVFs are 4, 5, 6 or 15. In the cases when the space-time admits 15 independent CVFs it becomes conformally flat.


2015 ◽  
Vol 93 (11) ◽  
pp. 1397-1401 ◽  
Author(s):  
A.S. Alofi ◽  
Ragab M. Gad

In this paper, homothetic vector fields of a spatially homogenous Bianchi type-I cosmological model have been evaluated based on Lyra geometry. Further, we investigate the equation of state in cases when a displacement vector [Formula: see text] is a function of t and when it is constant. We give a comparison between the obtained results, using Lyra geometry, and those obtained previously in the context of general relativity, based on Riemannian geometry.


2020 ◽  
Vol 17 (08) ◽  
pp. 2050120
Author(s):  
Fiaz Hussain ◽  
Ghulam Shabbir ◽  
M. Ramzan ◽  
S. F. Hussain ◽  
Sabiha Qazi

Assuming the most general form of static spherically symmetric space-times, we search for the conformal vector fields in [Formula: see text] gravity by means of algebraic and direct integration approaches. In this study, there exist six cases which on account of further study yield conformal vector fields of dimension four, six and fifteen. During this study, we also recovered some well-known static spherically symmetric metrics announced in the current literature.


2010 ◽  
Vol 25 (25) ◽  
pp. 2145-2153 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we explored teleparallel homothetic vector fields in Bianchi type I spacetimes in the teleparallel theory of gravitation using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11 which are same in numbers as in general relativity. In the cases of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice of the spacetimes. In the case of 11 teleparallel homothetic vector fields all the torsion components are zero. The homothetic vector fields of general relativity are recovered in this case and the spacetime become Minkowski.


Sign in / Sign up

Export Citation Format

Share Document